АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук
ДМИТРИЙ ДАНЬШОВ

Знакомство с опытом и рекомендациями немецкой фирмы Kolbenschmidt по сборке двигателя позволяет сделать следующий вывод: грамотно собрать двигатель способен только моторист, владеющий технологиями ремонта его деталей. Это наглядно проявляется при сборке головки блока цилиндров, многие операции которой (в том числе ремонт седел клапанов) обычно выполняются непосредственно на СТО. О них и пойдет сегодня речь.

Ремонт и сборка головки блока, как, впрочем, и других узлов двигателя, начинается с проведения необходимых измерений и проверок. Причем особое внимание необходимо уделять именно седлам клапанов.

Зачем это нужно?

Седло клапана - едва ли не самый ответственный элемент головки блока, в чем легко убедиться, анализируя условия работы клапана. Одно из главных условий - это надежное уплотнение сопряжения клапана с седлом, при котором утечки газов из камеры сгорания минимальны, а компрессия - максимальна. Выполнение этого условия одновременно означает обеспечение хорошего теплового контакта клапана с седлом. Другими словами, плотное прилегание клапана к седлу позволяет отводить тепло от нагретой горячими газами тарелки через седло в головку блока, охлаждаемую жидкостью. И наоборот, любое нарушение герметичности в сопряжении клапана с седлом приводит к нарушению нормального теплового режима тарелки, седла и возникновению опасных дефектов, грозящих разрушением деталей.

Очень важно, чтобы герметичность сопряжения сохранялась в течение всего срока службы двигателя. Это достигается приданием уплотняющим фаскам седла и клапана специального профиля, компенсирующего износ сопряженных поверхностей. Кроме того, правильная геометрия седла уменьшает сопротивление при впуске топливовоздушной смеси и выпуске отработавших газов, учитывая экономические и мощностные показатели двигателя.

Вполне естественно, что в процессе эксплуатации седла и фаски клапанов изнашиваются. Нередки и более серьезные дефекты седел, которые удается обнаружить при тщательном контроле головки блока.

Как проверить седло?

Прежде чем приступить к проверке, необходимо тщательно очистить поверхность камер сгорания и седел - под слоем нагара могут скрываться трещины. Особое внимание следует обратить на «отмытые» от нагара в процессе работы двигателя поверхности камер, резко отличающиеся от других камер по цвету: именно здесь наиболее вероятно обнаружение всяческих сюрпризов.

В зависимости от характера дефектов принимается решение о ремонте старых седел или необходимости замены их на новые.

Менять седло необходимо в следующих случаях:

- обнаружена трещина в стенке камеры сгорания, и предполагается ремонт головки блока сваркой;

- седло повреждено разрушившимся клапаном или поршнем;

- есть подозрение на ослабление посадки седла в головке;

- вокруг внешнего диаметра седла наблюдаются следы коррозии;

- на седле обнаружена трещина или имеются следы его обгорания;

- большой износ седла, ведущий к его чрезмерному «углублению» при ремонте.

Последний дефект может привести к тому, что тарелка клапана сильно «провалится», и стержень клапана выдвинется вверх, нарушив работу гидротолкателя.

Если один из указанных дефектов обнаружен, необходимо заменить дефектные седла, строго соблюдая технологию замены. Такая технология рекомендована, в частности, фирмой Kolbenschmidt.

Как заменить седло?

Вообще говоря, замена седла - операция несложная и может быть выполнена несколькими способами.

Вначале необходимо удалить старое седло. Для этого удобнее всего использовать специализированный станок для ремонта головок блока, хотя вполне допустимо использовать универсальное станочное оборудование (расточной или фрезерный станок) или даже ручные приспособления для ремонта седел.

Перед обработкой с помощью направляющего стержня (пилота) головка блока устанавливается на станке так, чтобы обеспечить соосность отверстия направляющей втулки и режущего инструмента. Если настроить резец на размер, чуть меньший наружного диаметра седла, то после растачивания оставшаяся тонкая часть седла, как только она начнет вращаться, легко удаляется вручную.

Гнездо седла желательно расточить для обеспечения его соосности с направляющей втулкой. В головках двигателей старых конструкций, имеющих толстые стенки, допустимо обработку гнезда не проводить, если его поверхность не имеет дефектов и чрезмерных отклонений от цилиндричности.

При наличии трещин в головке блока их разделывают и заваривают, и лишь после обработки сварных швов растачивают гнезда для седел. В подобных случаях обязателен и контроль на герметичность рубашки (опрессовка) головки - его также необходимо делать при любом подозрении на наличие скрытых трещин.

Сама опрессовка - операция не сложная, однако достаточно трудоемкая. Ее проводят в горячей воде сжатым воздухом под давлением 6 атм - обычно этого достаточно, чтобы пузырьки в местах скрытых трещин сделали их видимыми.

При растачивании гнезда на станке следует придерживаться определенных режимов резания: для чугунных головок - 250 об/мин без масла, а для алюминиевых - 600 об/мин с маслом. После обработки диаметр гнезда у двигателей прошлых лет выпуска должен быть в среднем на 2,5 мм больше диаметра тарелки клапана, а глубина - 4,6,5 мм. У новых моторов диаметр гнезда под седло может и не превышать диаметра тарелки из-за недостаточной толщины стенок.

Новые седла изготавливаются из специальных чугунов или спеченных материалов. Некоторые фирмы выпускают заготовки седел в виде труб с соответствующими наружным и внутренним диаметрами либо уже готовые седла с увеличенным наружным диаметром.

Материал седла имеет решающее значение для долговечности и надежности двигателя. Поэтому некоторые производители (включая фирму Kolbenschmidt) выпускают седла из специальных материалов. Так, для высоконагруженных моторов находит применение композиционный материал - высокодисперсный карбид вольфрама, распределенный в матраце из инструментальной стали. По твердости и прочности такой материал подобен чугуну, но имеет более высокую износо - и теплостойкость. При введении в стальную матрицу специальных добавок седло приобретает свойства керамики со смазывающими свойствами в условиях высоких температур. Тем самым предотвращается эрозия седла, вызываемая микросваркой седла с поверхностью клапана, что случается с обычными материалами седел у газовых двигателей и тяжело нагруженных дизелей.

При изготовлении седла важно выдержать натяг (в среднем 0,0,15 мм) по наружному диаметру и «не промахнуться» с внутренним диаметром, который обычно меньше диаметра тарелки клапана на 2,5 мм. Кроме того, необходимо выполнить на седле заходную фаску, исключающую задир гнезда при установке седла.

Установка седла - наиболее ответственный этап работы. Если замеры седла и гнезда выполнены правильно, в отверстии гнезда не осталось стружки, и приготовлена специальная оправка, можно приступать к запрессовке.

Для облегчения установки седла головку блока следует подогреть до 200°С, а само седло охладить в жидком азоте или углекислоте. Запрессовка осуществляется ударным способом и быстро, чтобы до ее окончания не произошло выравнивание температуры деталей.

Как поправить седло?

Изношенное или замененное седло обрабатывается для придания ему соответствующего профиля. Очевидно, этот профиль должен соответствовать форме тарелки клапана, иначе возможны негерметичность сопряжения, перегрев и разрушение тарелки и седла клапана.

Поверхность контакта тарелки с седлом должна располагаться на расстоянии 0,0,8 мм от наружного диаметра тарелки. Приближение поверхности контакта к кромке тарелки улучшает перенос тепла от клапана в седло. Но как только эта поверхность выходит на кромку тарелки, на ней концентрируется большой поток тепла, способный легко сжечь тарелку и седло. Перенос поверхности контакта ближе к стержню клапана также повышает температуру кромки тарелки (она «повисает в воздухе» и хуже охлаждается) и, кроме того, увеличивает гидравлическое сопротивление потокам топливовоздушной смеси и продуктов сгорания.

Чтобы добиться требуемого профиля седла, рекомендуется вначале обрабатывать основной угол седла (его обычно делают на 0,1o меньше угла фаски клапана, чтобы ускорить приработку клапана к седлу), затем - верхний угол для обеспечения высоты рабочей фаски седла, после чего - угол, примыкающий к поверхности камеры сгорания, обеспечивающий нужный диаметр седла.

Очень важна ширина рабочей фаски седла. Обычно для впускных седел ширина рабочей фаски составляет 1,1,5 мм, для выпускных - 1,2,0 мм. Для седел клапанных моторов, имеющих диаметр тарелки менее 32 мм, ширину фаски можно уменьшить в 1,2 раза. При увеличении ширины фаски (и, соответственно, площади контакта) улучшается охлаждение тарелки, но труднее обеспечить герметичность. Последнее может вызвать утечки горячих газов и прогар седла или клапана. Напротив, узкая фаска отлично уплотняет, но срок службы клапана и седла сокращается из-за высоких механических нагрузок и температур на поверхностях контакта.

Для качественной обработки седел применяют разные методы: шлифовку, расточку специальными фрезами и резцами - вручную или на специализированных станках.

Наиболее простой способ обработки - твердосплавными ручными фрезами («шарошками»). Купить этот недорогой отечественный инструмент сейчас можно во многих местах. В результате обработки профиль седла получается несколько упрощённым, наблюдается незначительная неконцентричность седла и оси отверстия направляющей втулки. Все это, а также невысокая чистота и следы «дробления» инструмента требуют последующей притирки.

Прекрасные результаты дает использование инструмента американской фирмы NEWAY. На нём твёрдосплавные резцы имеют несколько режущих кромок и могут регулироваться по диаметру. Такой инструмент обладает достаточной универсальностью и обеспечивает хорошую точность и чистоту поверхности, которая не требует последующей притирки. Простота NEWAY делает его привлекательным для использования в условиях СТО.

Самые широкие возможности даёт обработка профильным резцом. В этом случае геометрия седла заложена в профиле самого инструмента. Ошибок и неточностей здесь уже быть не может. Сёдла получаются в точности такими, какими их спроектировали конструкторы мотора. Более того, все сёдла получаются одинаковыми, а для работы мотора это немаловажный момент. Проводить такую обработку позволяют не только специализированные станки, но и относительно недорогие установки с ручным приводом, выпускаемые иностранными фирмами.

Аналогичные возможности имеет и отечественная установка «Механика-2». Основой конструкции является самоустанавливающийся шпиндель с микроподачей.

Обработка сёдел на такой установке идёт минимум в три раза быстрее, чем ручными шарошками, за счёт одновременной обработки всех фасок седла, причем можно получить профиль любого сечения, а также удалить изношенное седло и обработать гнездо под запрессовку нового. Последнее весьма удобно при производстве тюнинговых и спортивных ГБЦ с «радиусным» профилем и увеличенным диаметром седла.

В промышленном ремонте используются специализированные «головочные» машины. В России такие станки пока не выпускаются, а из импортных моделей популярны SUNNEN, SERDI, BERCO и AMC. Такое оборудование позволяет выполнять любые необходимые операции и обрабатывать или заменять сёдла и направляющие на любых ГБЦ. Шпиндельная часть станка свободно перемещается по станине на воздушной подушке, что облегчает самоцентрирование резца.

Точность обработки седла на указанном оборудовании очень высока, что обеспечивает хорошую герметичность клапана после сборки узла. Напротив, после обработки недорогим ручным инструментом рабочая фаска седла нередко не концентрична оси отверстия направляющей втулки (несоосность более 0,02 мм), а поверхность фаски оказывается некруглой или имеет характерное «дробление». Тогда приходится прибегать к дополнительной операции - притирке клапана к седлу.

Притирка хорошо освоена и широко применяется на большинстве отечественных СТО. Более того, в некоторых мастерских весь процесс ремонта седел вообще ограничивают одной притиркой, получая в результате совершенно произвольную форму сопряжения седла и клапана. Зарубежные фирмы притирку не рекомендуют ни в каком виде, на что есть весьма серьезные причины.

Действительно, при высокой точности обработки, характерной для импортного оборудования, притирка не нужна. В России хорошее оборудование пока не распространено, а то, что используется, не дает нужной точности, из-за чего без притирки не обойтись. Но притирка - это неизбежное искажение формы седла и фаски клапана, насыщение седла абразивными частицами и в конечном счете заметное снижение ресурса двигателя. Так что притирать клапан или нет - решайте сами.

После тщательной мойки всех деталей проводят контроль герметичности клапанов. Быстрее всего эта проверка выполняется на специализированных вакуумных установках. Однако результат не всегда достоверен - усилие прижатия тарелки к седлу достаточно велико, и некоторые погрешности обработки (в частности, несоосность стержня и фаски клапана или отверстия направляющей втулки и седла) могут быть не замечены. На наш взгляд, даже простая проверка прилегания клапана «по краске» более достоверна. В некоторых мастерских герметичность клапанов проверяют, наливая в камеру керосин, но это сложнее и дольше.

Последняя проверка - на «выступание» стержня клапана - необходима в основном для двигателей с гидротолкателями. Если тарелка слишком сильно выступает в камеру сгорания, его стержень «утоплен», и гидротолкатель не выберет зазора в приводе - не хватит хода плунжера. Такая ситуация возможна после установки новых седел. При ремонте старых седел возможно «проваливание» тарелок, при котором клапаны после сборки головки могут зависнуть в открытом положении, уперевшись в полностью сжатые гидротолкатели.

Что еще надо сделать?

Безусловно, отремонтированная головка блока перед сборкой должна иметь ровную привалочную плоскость. Восстанавливается плоскость обработкой на плоскошлифовальном или фрезерном станках, но наилучшие результаты дает обработка на специализированном станке (такое оборудование выпускается рядом зарубежных фирм). Определенную сложность представляет обработка головок дизельных двигателей с форкамерами. Форкамеры выполнены из жаропрочных сталей, а на некоторых моторах встречаются даже керамические форкамеры, обладающие очень высокой твёрдостью. Обработать плоскость такой головки можно специальным инструментом в виде блока абразивных секторов.

Строго говоря, форкамеры должны иметь выступание над поверхностью ГБЦ в пределах 0,0,05мм. Соблюдение этого требования значительно усложняет работу: необходимо удаление форкамер, затем обработка ГБЦ по плоскости, затем запрессовка новых форкамер в головку прямо на столе шлифовального станка, а уже затем обработка только поверхности форкамер. На практике «хорошо сидящие» в головке блока форкамеры лучше без острой необходимости «не беспокоить». Их выступание при обработке плоскости получится само, за счёт «отжатия» инструмента - с твёрдой стенки форкамеры станок снимет меньше металла, чем мягкого материала головки.

Итак, все сделано - отремонтировано, восстановлено, проверено, промыто. Значит, можно собирать? Еще рано. Забыли проверить пружины клапанов - их длину в свободном состоянии и усилие при сжатии на определенную величину, регламентированные производителем двигателя.

Перед установкой клапанов в головку необходимо смазывать их стержни маслом, а при установке маслосъемных колпачков не стоит забивать их «со всей ненавистью» - на некоторых двигателях колпачки не имеют упора и легко могут оказаться порваны.

В остальном сборка головки блока обычно не вызывает затруднений. Перед установкой головки на блок цилиндров желательно повернуть распределительный вал в положение, соответствующее ВМТ го цилиндра, а поршни поворотом коленвала несколько отвести от ВМТ, чтобы не погнуть клапаны. Осталось смазать болты головки блока, затянуть их и точно установить фазы газораспределения.

Рекомендуемый натяг седел в головке блока цилиндров

Наружный диаметр седла, мм Чугунная ГБЦ, мм Алюминиевая ГБЦ, мм
30 0,08 0,12
40 0,11 0,15
50 0,13 0,18
60 0,16 0,20
70 0,18 0,22

Чтобы удалить старое седло, его растачивают (а) до момента, пока оставшееся тонкое кольцо не провернется (б). После чего гнездо растачивают «как чисто» или под готовое новое седло (в)

Установка нового седла выполняется с помощью оправки (а) ударным способом (б)

Контроль прилегания клапана к седлу - необходимая процедура при ремонте седел

(Продолжение. Начало в №№ 4/2001)

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Ранее мы достаточно подробно рассказали о технологии сборки кривошипно-шатунного механизма, поршневой группы и головки блока цилиндров. Может показаться, что для правильной сборки двигателя вполне достаточно овладеть только этими технологиями. Но это только на первый взгляд. На самом деле одних технологий мало. Необходимо кое-что еще...

Представьте себе такую ситуацию: моторист работает, затягивает разные там гайки, болты. И вдруг... звонит телефон: зовут моториста. Ну ладно, подошел, поговорил. И продолжил работу. Только болт один остался незатянутым - не успел как раз тогда, когда к телефону позвали.

Или на обед пригласили. А может, клиент приехал и срочно позвали проконсультировать. Да и вообще, мало ли сколько еще может быть подобных ситуаций, когда приходится отвлекаться от работы. А работа моториста требует особой внимательности и цена такой причины может оказаться весьма высокой.

Как исключить ошибки?

Практика показывает, что тривиальными вещами типа незатянутых болтов и гаек ошибки при сборке двигателя не ограничиваются. Назовем еще целый ряд весьма неприятных происшествий, как то:

- установка в двигатель неотремонтированных или незамененных деталей, пропущенных при дефектовке;

- установка некачественно отремонтированных деталей;

- установка некондиционных новых деталей;

- затяжка резьбовых соединений нерекомендуемыми моментами;

- «забывчивость» моториста, когда какие-то операции или детали не контролируются вовсе.

Все эти ошибки, очевидно, приведут в лучшем случае к снижению ресурса отремонтированного двигателя, в худшем - к его досрочному выходу из строя и, как следствие, - к сложному и дорогому повторному ремонту. Отсюда следует весьма важный вывод - все сборочные операции должны тщательным образом контролироваться.

О необходимости контроля геометрии устанавливаемых в двигатель деталей мы уже не раз говорили, и, надеемся, никого убеждать в этом не нужно. В самом деле, что может быть проще - взял необходимые измерительные приборы, промерил размеры сопряженных деталей и убедился в пригодности или, наоборот, их непригодности к сборке.

А как быть с другими операциями? С той же затяжкой болтов? Посмотрел соответствующее руководство по ремонту и затянул - тоже не такая уж сложная работа. Однако все мы обычные люди - моторист не исключение. Он тоже может забыть затянуть болт или измерить что-нибудь. Тем более что двигатели год от года усложняются, и операций типа «измерь-затяни» становится все больше. И полагаться на свою, пусть даже феноменальную, память для моториста все труднее и труднее, можно даже сказать - ошибочно. Особенно когда у него «в работе» сразу несколько двигателей.

Как же быть? А очень просто: не стесняться - записывать. Естественно, не на клочках бумаги, а в специальной тетради в определенной последовательности. И это тоже будет своеобразный контроль не только деталей, но и самого себя.

Проверил - запиши!

Многолетняя практика моторного ремонта показала: если моторист записывает результаты всех сборочных операций определенным образом, то вероятность ошибок при сборке резко уменьшается. Здесь срабатывает некий психологический момент: нет смысла записывать то, что не проверено, а уж если записано - значит, действительно проверено.

Вести подобные записи удобнее в виде технологической карты - своеобразного протокола контрольно-измерительных операций. При этом в нем совмещен контроль моментов затяжки резьбовых соединений, результатов измерений размеров, формы и взаимного расположения поверхностей деталей. Для удобства и простоты соответствующие разделы и пункты протокола должны соответствовать общему порядку выполнения всех сборочных операций.

В порядке приоритета в протокол целесообразно ввести в первую очередь контроль тех деталей, которые определяют работоспособность двигателя в целом. К примеру, наиболее подробно приходится «расписывать» и, соответственно, контролировать состояние кривошипно-шатунного механизма - дефекты в этом узле чреваты наиболее серьезными поломками. Но и другие детали и узлы никак нельзя обойти вниманием, особенно поршневую группу и привод газораспределительного механизма.

Некоторые разделы протокола могут дублироваться, - это результаты тех проверок, которые обычно проводят при дефектовке двигателя после разборки. Такой порядок вполне оправдан: даже при небольшом объеме работ моторного участка (5 двигателей в месяц) проблематично запомнить все неисправности и дефекты ремонтируемых двигателей. И нельзя быть уверенным в том, что какая-нибудь деталь «не проскочит» на сборку без ремонта.

В то же время при дефектовке далеко не всегда удается выявить все дефекты, однако детали, требующие ремонта или замены, не должны попасть в двигатель при сборке ни при каких условиях. В таких случаях повторный контроль совсем не лишний. Именно он нередко позволяет обнаружить разного рода «неочевидные» дефекты - трещины, деформации, ослабление посадки втулок и многое другое.

Тем не менее, при сборке главное внимание должно уделяться отремонтированным деталям. И не случайно: различные нарушения ремонтных технологий способны внести в геометрию деталей ряд отклонений, которые не возникают даже после самой «грубой» эксплуатации. В соответствии с этим и построен протокол - с его помощью, как правило, удается «отловить» брак или, по крайней мере, снизить вероятность установки дефектных деталей в двигатель.

Если рассматривать отдельные пункты нашего протокола, то вспоминается такая история. Инструктор подводит курсантов к самолету и спрашивает: «Видите надписи красными буквами около лючков на фюзеляже и крыльях? Так вот, они написаны кровью». То есть ошибка в работе технического персонала неминуемо ведет к аварии или катастрофе.

Автомобиль, конечно, не самолет, но последствия ошибок моториста могут стоить недешево. А за каждым пунктом протокола, можете поверить, скрывается своя история дефекта деталей двигателя и ее последствий.

Наш ответ скептикам

Предвидим возражения некоторых «специалистов»: заполнять при сборке двигателя какие-то бумаги - только зря тратить время и увеличивать срок ремонта, который и так немалый. А время, как известно, это деньги!

Все правильно, если перед СТО задача - как можно быстрее сделать абы как, а получить побольше.

Ремонт двигателей, к сожалению, в подобную «технологическую» схему никак не укладывается, а любые попытки ее реализовать на практике ведут к одному и тому же результату - двигатель обязательно и очень быстро выходит из строя.

Опыт показывает, что внедрение технологических карт (протоколов) сборки значительно увеличивает надежность двигателей после ремонта. Неисправности, конечно, могут случаться, но незначительные - к примеру, течь шлангов или нарушение контактов в разъемах проводки. Но эти мелочи случаются и на новых моторах. Серьезных же происшествий удается избежать.

В результате то, что кажется излишней потерей времени, на деле окупается многократно, и срабатывает самая лучшая реклама для СТО - хорошая работа и довольный клиент.

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Ремонт двигателей - «дело тонкое» во всех отношениях. Аккуратность, внимательность и чистота - вот только некоторые из слагаемых успеха. Но главное - это точность. Точность во всем: при ремонте деталей, при сборке, при контроле всех сопрягаемых поверхностей. Очевидно, при этом не обойтись без измерительных приборов.

Времена, когда «шлифовщик шлифует, расточник растачивает, а моторист только собирает», т.е. гайки закручивает, похоже, уходят в прошлое. Сегодня на каждом уважающем себя и клиента сервисе, занимающимся ремонтом двигателей, присутствует необходимый комплект измерительного инструмента.

Без измерительного инструмента невозможна ни одна технологическая операция. Прошлифовать коленчатый вал, расточить блок цилиндров, а также выполнить множество других работ по мехобработке деталей, чтобы привести их «в чувство», удается только с помощью точных измерений. Можно даже сказать, что измерения - основа любой моторной работы. И если без хорошего слесарного инструмента моторист, как без рук, то без измерительного инструмента он попросту - без глаз.

Естественно, чтобы измерять детали правильно и точно, нужен «правильный» инструмент, удобный и безотказный. Какой именно, попробуем разобраться, но сначала попытаемся сформулировать некие общие принципы измерения деталей.

Что будем измерять?

Ответ на этот вопрос позволяет определить, какой измерительный инструмент требуется на участке моторного ремонта. На первый взгляд кажется, что промерять рабочие поверхности деталей надо для того, чтобы сделать вывод: годятся ли эти детали для установки в двигатель или нет. Однако такие измерения, выполненные, что называется, «в лоб», могут оказаться слишком трудоемкими и вот почему.

В деталях двигателей существуют две группы размеров, контроль которых требует принципиально различных инструментов и приборов. К первой группе относятся разного рода отклонения от заданной геометрической формы и взаимного расположения рабочих поверхностей деталей. Сюда, к примеру, можно отнести такие параметры, как взаимное биение шеек валов и неплоскостность привалочных поверхностей блока и головки блока. Обычно определить такие отклонения не составляет большого труда при наличии индикаторной стойки с призмами и лекальной линейки с набором щупов.

Другие параметры из этой группы, характеризующие взаимное положение рабочих поверхностей (например, неперпендикулярность цилиндров к оси вращения коленвала или непараллельность осей шатунных и коренных шеек коленвала), измерять вообще чрезвычайно трудно - их допустимые значения должны быть обеспечены «правильной» технологией ремонта.

Вторая группа параметров - величины зазоров в сопряжениях деталей. То есть если в отверстие установлен вал, то между ним и отверстием существует зазор, по величине которого можно уверенно сказать, будет или не будет работать такое сопряжение.

В самом деле, если проанализировать все сопряжения в двигателе: поршень в цилиндре, поршневой палец в поршне и шатуне, коленчатый вал в подшипниках блока и шатунов, распределительный вал в подшипниках головки блока и многие другие, можно прийти к очевидному заключению, что абсолютное значение размера (диаметра) конкретного вала или отверстия имеет лишь второстепенное и далеко не главное значение. Главное же - это зазор между ними, его в первую очередь необходимо обеспечить при ремонте деталей и контролировать при сборке двигателя.

Пойдем дальше - большое значение имеют отклонения формы рабочих поверхностей сопряженных деталей. Их нецилиндричность (эллипсность, бочкообразность, конусность, корсетность) сразу приведет к нестабильности рабочего зазора либо по окружности, либо по длине рабочей поверхности. И снова абсолютное значение диаметра не столь важно, главное - величина зазора и отклонения от цилиндричности.

Что же получается? А вот что: измерения таких параметров при ремонте должны давать результат в большей степени относительный, а вовсе не абсолютный. Это значит, что можно с особой тщательностью, с точностью до микрона, вымерять абсолютные размеры отверстия и вала, чтобы затем найти разницу между ними, т.е. рабочий зазор в сопряжении. Можно, но совсем не обязательно. А во многих случаях и не желательно, поскольку величина зазора не будет непосредственно измерена. Гораздо лучше постараться как можно точнее определить зазор в сопряжении и лишь затем, если надо, найти абсолютные размеры деталей (последнее, кстати, потребуется лишь тогда, когда зазор окажется явно «не в допуске», для выяснения «виновника» этого отклонения).

Получаются, как говорится, «две большие разницы» - между абсолютными и относительными измерениями. Более того, разные цели измерений - абсолютный размер или относительный (зазор) - требуют разных измерительных инструментов, да и точность их может быть тоже разной.

Плюс-минус бесконечность?

«Надо взять как можно более точные приборы, промерить детали с микронной точностью - и нет никакой проблемы!» - слышим возражения некоторых специалистов. Что ж, разумно, давайте попробуем.

Вот великолепный импортный нутрометр для измерения диаметров отверстий, прибор не дешевый, но и точность его соответствующая - 2мкм. Чтобы ее добиться, нутрометр снабжен специальным установочным прибором с соответствующим калибром. Лучше прибора не бывает! А вот рычажная скоба или микрометр с индикатором - точность измерений наружного диаметра вала те же 2 мкм - настраиваются по плоскопараллельным мерам длины (плиткам Иогансона). Осталось только взять эти два прибора, и - к двигателю.

Пробуем - результат отличный! Диаметры отверстия и вала измерены с завидной точностью, вычитаем одно значение из другого и получаем величину зазора в сопряжении - прекрасно! Берем «на вооружение» эту систему? Конечно, берем, да еще с другими поспорим, у кого такой нет, что мы измерим лучше всех и точнее всех!

И вот наша великолепная измерительная система в эксплуатации - «трудится» день ото дня и на расточке от блока к блоку, и на шлифовке коленвала к коленвалу, и на сборке. Идет время и ... однажды приезжает заказчик и говорит: «Просил сделать зазор в блоке с поршнем 0,03 мм, а получилось вдвое больше! Сам замерял». - «А чем мерил?» - «Да как обычно, нутромер с микрометром». - «Э, брат, у тебя погрешность измерений не менее 0,02 мм. Это, по сравнению с нашими инструментами, плюс-минус бесконечность! У нас все правильно, видишь?»

Мы совершенно ничего не выдумали, т.к. не раз были свидетелями подобных сцен. И каждый раз получалось, что это заказчик ошибся, это у него приборы дешевые, плохие и неточные. Иностранный же прибор - он ведь врать никак не может, зря что ли деньги за него отвалили, и не малые?!

Только одна маленькая деталь - дорогостоящий импортный измеритель не панацея, когда речь идет о моторном деле. Потому что прежде, чем делать, надо хорошо подумать. К примеру, о том, может ли «врать» самая лучшая измерительная система?

Оказывается, вполне, да еще как! Причина проста: за время работы оказались изношены калибры, по которым настраивают приборы. А это важно - ведь измеряются два абсолютных размера. Вот и пошла «гулять», постепенно нарастая, систематическая погрешность измерений. В конце концов точнейший импортный прибор стал давать никуда не годный результат - ту же «плюс-минус бесконечность», в которой еще недавно обвинялись простые и дешевые отечественные приборы, чему мы совершенно не удивляемся. Точнейшая, сложнейшая и дорогущая импортная техника, как мы уже установили ранее (см. № 12/2001), только тогда дает хороший результат, когда правильно применяется. В том числе без оглядки на то, что она - точнейшая и дорогущая. Иначе точности у нее не будет, а значит, и цена ей - грош.

Когда точность точности рознь

Сравнивая или оценивая те или иные измерительные системы, необходимо представлять, с какой точностью вообще надо проводить измерения размеров моторных деталей. Микрон - это, конечно, прекрасно, а надо ли?

Представьте: мы проводим измерения диаметров цилиндра и поршня с точностью 1 мкм. А какой должен быть зазор поршня в цилиндре? Ответ: 0,0,06 мм. Получается, что наша «бешеная» точность здесь совершенно ни к чему - допуски на размеры деталей в десятки раз больше. То же самое относится и к подшипникам двигателя - допуски там почти такие же.

Но, может быть, точнейший прибор позволит нам точнейшим же образом (±1 мкм) выдержать минимально допустимый зазор, чтобы обеспечить максимальный ресурс двигателя? По нашему мнению, такое стремление, по меньшей мере, наивно: отремонтировать цилиндр так, чтобы все отклонения от цилиндричности были бы меньше 0,01 мм, чрезвычайно трудно на любом оборудовании (кто не верит, пусть проверит).

Кроме того, любой самый точный прибор начнет безбожно «врать», как только попадет в несоответствующие его точности температурные условия. Для прецизионных измерений, как известно, необходимо строго поддерживать температуру в помещении на уровне 20±1oС. А где это выдерживают? Может быть, там, где пользуются самыми точными микронными приборами? Тогда давайте возьмем поршень в руку и подержим секунд 30, пока измеряем. Почувствовали разницу микрон эдак в пять-шесть? Зачем же копья ломать, добиваясь точности в одну тысячную мм?

Вот и получается, что точность измерения должна соответствовать реальным деталям и реальным условиям. А этот уровень для любого двигателя - та же «сотка» -0,01мм (исключение составляет лишь соединение поршневого пальца с шатуном и поршнем - там точность измерений должна быть выше). Для таких измерений не требуется ничего сверхъестественного - обычные измерительные приборы.

Подобные приборы в отечественной практике применяются очень широко. Это всем известные нутромеры и микрометры - простые, доступные и надежные. Самое же важное в другом - измерительная система «нутромер-микрометр» позволяет непосредственно измерить зазор в сопряжении деталей. Вал при этом измеряется микрометром, нутромер настраивается на этот размер, и далее с его помощью измеряется диаметр отверстия относительно вала, т.е. величина зазора,- просто и ясно.

Специалисты возразят: нутромер нельзя настраивать по микрометру - только по специальному кольцу-калибру. Действительно, кольцо позволяет исключить, главным образом, погрешность от износа ножки нутромера (ее контакт с цилиндрической поверхностью кольца и с плоской поверхностью микрометра дает несколько разные результаты). Но тогда нельзя сразу измерить зазор, к тому же для микрометра потребуется свой калибр. В результате можем прийти к описанной выше ошибке, намного превышающей все возможные погрешности настройки нутромера по микрометру.

Горе от ума, или как не надо измерять

В некоторых мастерских приходилось наблюдать разного рода измерительные «изыски», не выдерживающие, по нашему мнению, никакой критики.

Есть, к примеру, такой прекрасный прибор - оптиметр. Он служит для очень точного измерения плоских деталей. Но народным умельцам это не важно - им надо поршень измерить. Микрометр или рычажная скоба им не интересны - они у всех есть, а клиента надо «напугать», чтобы уважал. Вот и стараются, измеряют бочкообразный поршень на оптиметре: поршень на столе прибора гуляет, как хочет (его наружная поверхность весьма далека от цилиндрической), стрелка индикатора скачет, как безумная. Но ничего, знай себе, меряют, только что получают в результате, сами не знают.

Или такой вариант: вместо обычного микрометра используют рычажную скобу с индикатором. Дело в принципе неплохое - рычажная скоба настраивается на нужный размер с помощью плоскопараллельных мер длины, после чего поршень можно измерить с точностью до 2 мкм. Да и шейку коленчатого вала легко «прокрутить» скобой и сразу получить эллипсность. Но если коленчатый вал - это понятно, там эллипсность должна быть не более 5 мкм, то причем здесь поршень с цилиндром? А вот если нутромер настраивать по измерительной скобе, то это уже совсем перебор - в обоих приборах есть пружинные элементы.

Видимо, действуют по известному принципу «глаза боятся, а руки делают». Только что руки делают, непонятно. Сами «мастера» этого не знают, но клиента пугают своей «точностью», без сомнения.

Мы - тоже за точность, только разумную, соответствующую допускам на детали, которые надо измерить. И за правильный выбор измерительного инструмента. Чтобы потом ничего не пришлось поправлять в измерениях - выйдет себе дороже.

Рычажная скоба с индикатором - инструмент прекрасный во всех отношениях. Только его точность при измерениях размеров большинства моторных деталей (2 мкм) явно избыточна

Обычный микрометр позволяет измерить диаметр поршня с точностью в 0,01 мм. Этого вполне достаточно, надо только уметь пользоваться этим прибором

Чтобы точно измерить относительный размер - зазор в цилиндре (а), нутромер настраивается по микрометру (б), предварительно уже настроенному на размер поршня

Демонстрируем, как не надо измерять диаметр поршня. Точность оптиметра - 1мкм, погрешность измерений - «плюс-минус бесконечность»

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук,
ГРИГОРИЙ ЦВЕЛЕВ

Придуманный в конце прошлого века Рудольфом Дизелем двигатель, получивший имя изобретателя, еще недавно считался у нас атрибутом ну разве что большегрузных автомобилей типа МАЗов и КамАЗов. Отечественные разработки дизелей для легковых автомобилей, к сожалению, так и не увидели свет. Но время неумолимо идет вперед — сегодня на дорогах России уже десятки тысяч дизельных легковых автомобилей и микроавтобусов. А для их грамотной эксплуатации, обслуживания и ремонта необходимо знать устройство двигателя.

По конструкции дизель мало отличается от обычного бензинового мотора — те же коленчатый вал, шатуны, клапаны… Правда, детали усилены, чтобы воспринимать более высокие нагрузки, возникающие при сгорании топлива — ведь степень сжатия у дизеля в два с лишним раза выше (около 24).

Принципиальное отличие дизеля заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового двигателя, как известно, смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. У дизеля, напротив, в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры самовоспламенения топлива (800°С), оно впрыскивается в камеры сгорания форсунками под большим давлением (30 МПа). Для создания такого давления применяются специальные топливные насосы высокого давления (ТНВД), приводимые от коленчатого вала двигателя. Свечи у дизеля тоже есть, но они являются свечами накаливания и разогревают воздух в камере сгорания, чтобы облегчить запуск.

Подобная организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет высокую экономичность дизельного двигателя. Управление осуществляется не дроссельной заслонкой (ее может просто не быть), а только изменением подачи топлива.

Дизель из-за особенностей своего рабочего процесса имеет высокий крутящий момент в широком диапазоне частот вращения, что делает его гибким в управлении, особенно при работе в тяжелых дорожных условиях. Да и в экологическом плане дизель лучше — при работе на бедных смесях выбросы вредных веществ, особенно оксида углерода, заметно меньше, чем у бензиновых моторов.

Разумеется, дизель имеет и недостатки. Главные — повышенные шум и вибрация. Они обусловлены высокой степенью сжатия и быстрым нарастанием давления в цилиндре при самовоспламенении смеси. Дизель трудно запустить в холодное время года. Мощность дизельного двигателя ниже, чем бензинового того же рабочего объема, в основном, из-за пониженной максимальной частоты вращения (обычно она не превышает 4800 об/мин.), а масса дизеля больше. Впрочем, применение многоклапанных головок, развитие систем топливоподачи, в том числе электронного управления впрыском топлива, постепенно сглаживают эти недостатки.

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой (рис.1а) — их также называют дизелями с непосредственным впрыском (Direct Injection), топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. До недавнего времени подобные решения применялись, в основном, на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями организации процесса сгорания, а также с повышенным шумом, особенно на непрогретом двигателе.

В последние годы благодаря применению ТНВД с электронным управлением и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой на частотах вращения до 4500 об/мин, улучшить на 20% его экономичность, существенно снизив шум и вибрацию. И теперь такие двигатели для легковых автомобилей широко применяют фирмы AUDI, Ford, Toyota и даже известный своей осторожностью Mercedes. В России наиболее распространены следующие автомобили с такими дизелями: Ford Transit (2,5 л), AUDI 1,9 TDI (1,9 л) и Audi 100 (2,5 л).

В дизелях с разделенной камерой подача топлива осуществляется не в цилиндр, а в дополнительную камеру. В наиболее распространенных вихрекамерных дизелях (рис.1б) такая камера (она называется вихревой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался. Это способствует хорошему перемешиванию впрыскиваемых топлива и воздуха и самовоспламенению смеси. Именно такая схема первоначально позволила без больших трудностей добиться высокой частоты вращения, необходимой для двигателей легковых автомобилей. Поэтому вихрекамерные дизели пока составляют большинство (около 90%) среди устанавливаемых на легковые автомобили.

Другой тип дизеля — предкамерный, имеет специальную вставную форкамеру (рис.1в), связанную с цилиндром несколькими небольшими каналами или отверстиями. Их сечение подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью. Это определяет целый ряд преимуществ предкамерного дизеля. Среди них большой ресурс, низкий шум, более полное сгорание топлива и низкая токсичность выхлопных газов, а также малое изменение крутящего момента по частоте вращения.

Данная схема широко применяется фирмой Mercedes для легковых автомобилей. Преимущества этой схемы, помноженные на традиционную надежность, фактически делают дизельные двигатели Mercedes лучшими. И это — несмотря на то, что по экономичности предкамерные дизели обычно несколько уступают вихрекамерным и с непосредственным впрыском, а их конструкция, как правило, сложнее и дороже. Последние модели дизелей Mercedes — ОМ 604, 605 и 606 — имеют четырехклапанные головки цилиндров и электронное управление впрыском топлива. Это позволило поднять их мощность на 25% и улучшить экономичность на 10%, приблизив эти параметры к лучшим образцам дизелей других типов.

Характерная деталь в конструкции дизелей — это поршень. Он существенно усилен по сравнению с бензиновым двигателем, его стенки значительно толще, поршневой палец имеет увеличенный диаметр, а поршневые кольца — высоту. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Различия других узлов и деталей не столь существенны и обусловлены требованиями надежности, компоновочными соображениями и традициями фирмы. Правда, следует заметить, что наиболее надежны в эксплуатации те двигатели, у которых привод газораспределительного механизма и ТНВД осуществляется цепью или шестернями (все двигатели Mercedes, BMW M51, Peugeot XD2, XD3, Nissan TD23, 25,27 и другие). Ремень, как показывает практика, несмотря на определенные достоинства, снижает надежность дизеля, так как при его обрыве двигатель обычно выходит из строя.

Очень эффективен для повышения мощности дизелей наддув. В отличие от бензиновых двигателей у дизеля турбонаддув работает во всем диапазоне частот вращения — ведь благодаря высокой степени сжатия давление отработавших газов здесь в 1,2 раза выше. Особенно высокое форсирование достигается промежуточным охлаждением воздуха, сжатого в компрессоре, перед его поступлением в двигатель. Для этого используют специальные радиаторы-охладители или интеркулеры (intercooler). Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Особое место в конструкции дизелей занимает система подачи топлива. Высокие давления впрыска делают ее достаточно сложной, от нее во многом зависят мощность и экономичность двигателя, а также его экологические характеристики. В эксплуатации с нарушениями в работе системы подачи топлива связано много различных неисправностей. Поэтому системам питания дизелей приходится уделять большое внимание и в обслуживании, и в ремонте.

Основным узлом топливной системы дизеля является топливный насос высокого давления. Его главные функции — нагнетание топлива в форсунки в строго дозированном количестве и обеспечение необходимого момента начала впрыскивания (он определяется углом опережения впрыска по аналогии с углом опережения зажигания у бензиновых двигателей).

На дизелях легковых автомобилей применяются три типа ТНВД. Рассмотрим их более подробно.

Плунжерные рядные насосы типа М или MW фирмы Bosch применяются сейчас, в основном, только фирмой Mercedes. Эти насосы сложны по конструкции, но обладают, пожалуй, максимальными надежностью и долговечностью. Конструктивно плунжерные ТНВД имеют отдельные нагнетательные секции на форсунку каждого цилиндра с приводом от кулачкового вала насоса. Каждая секция состоит из двух прецизионных (т. е. сверхточно выполненных) элементов — плунжера и нагнетательного клапана. Плунжер служит для нагнетания топлива в форсунку и установлен в корпусе насоса с очень малым зазором — менее 1 мкм. Кроме того, плунжер управляет количеством топлива, подаваемого к форсунке. Нагнетательный клапан необходим для быстрого запирания топливопровода, соединяющего насос и форсунку, и поддержания небольшого остаточного давления в топливопроводе между впрысками.

В распределительном насосе типа VE фирмы Bosch (подобные насосы производятся также японской фирмой Diesel KiKi по лицензии Bosch) система нагнетания имеет только один плунжер-распределитель, который совершает поступательные движения для нагнетания топлива и вращение для распределения топлива по форсункам. Поступательно-вращательное движение плунжера обеспечивается за счет его контакта с шаговым диском через ролики, при этом плунжер выполняет за один оборот диска столько циклов нагнетания, сколько цилиндров у двигателя.

В распределительных насосах типа DPC французской фирмы Lucas Rotodiesel и DPA, DPS английской фирмы Lucas-CAV систему нагнетания составляет пара противолежащих поршней, выполняющих поступательные движения навстречу друг другу. Нагнетание топлива происходит здесь в результате действия на поршни роликовых толкателей, набегающих на кулачки обоймы подшипника ротора. Распределение топлива по форсункам выполняется за счет разделителя, вращающегося вместе с поршнем и соединяющего или разъединяющего в определенных положениях насос с форсунками.

Чтобы ТНВД создавал необходимое давление впрыскивания, топливо должно поступать к плунжерной паре под небольшим давлением. Для этого используют насосы предварительной подкачки (низкого давления). В рядных ТНВД такой насос вынесен наружу и приводится от кулачкового вала двигателя, в то время как в распределительных насосах он установлен внутри корпуса самого ТНВД.

Конечным элементом топливной системы дизеля является форсунка. Она обычно заворачивается в головку блока цилиндров, но в некоторых дизелях прижимается специальным зажимом. Поскольку со стороны распылителя на форсунку воздействуют горячие газы, между ней и головкой устанавливают противопригарную шайбу, уплотняющую соединение и способствующую отводу тепла от форсунки.

Распылитель является основной деталью форсунки. В дизелях легковых автомобилей обычно применяют многоструйные или штифтовые распылители. Первый тип применяется в дизелях с непосредственным впрыском, второй — в дизелях с разделенной камерой сгорания.

Давление впрыска определяется усилием пружины распылителя. Под действием давления топлива в топливопроводе игла распылителя поднимается, и происходит впрыск. В момент, когда плунжер ТНВД прекращает нагнетание, давление резко падает, и игла распылителя садится на седло, отсекая подачу.

Еще одна специфическая принадлежность дизеля — система предпускового подогрева. У большинства дизелей в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 900°С, о чем водителю сигнализирует специальная контрольная лампа. Как только лампа погаснет, двигатель готов к запуску. Электропитание со свечей снимается автоматически после запуска. В холодное время года это происходит не сразу, а через 20 с, чтобы обеспечить устойчивость работы непрогретого двигателя.

На некоторых дизелях (например Ford Transit) в виде пускового устройства применен электрофакельный подогрев. Он включает свечу накаливания, объединенную со специальной форсункой. Топливо к пусковому устройству подается из отдельного поплавкового механизма. После запуска, как только снимается напряжение со свечи, прекращается и подача топлива к форсунке.

Современные системы предпускового подогрева в сочетании с усовершенствованной конструкцией двигателей обеспечивают устойчивый пуск исправного дизеля при температуре до -25°С, а иногда и до -30°С.

В процессе эксплуатации в дизелях возникает целый ряд неисправностей, характерных только для этого типа двигателей. Не вдаваясь в подробности (это темы наших будущих материалов), отметим, что значительными ресурсом и надежностью обладают дизели Mercedes, причем всех категорий. В то же время в наших российских условиях (а они являются, как известно, неплохим полигоном для испытаний) заметно уступают многим фирмам дизели VW, хотя при этом они имеют отличную ремонтопригодность. В любом случае оценка качеств того или иного автомобиля с дизелем всегда носит оттенок субъективности. То же можно сказать о сравнении бензинового двигателя и дизеля — каждый имеет собственные преимущества и недостатки.

ГРИГОРИЙ ЦВЕЛЕВ

Продолжая начатый в предыдущем номере («АБС-авто», декабрь 1998 г.) разговор об автомобилях с дизельными двигателями, остановимся сегодня на их типичных неисправностях.

Практика показывает, что не только механик, но и сам владелец автомобиля должен хорошо представлять себе особенности его эксплуатации и ремонта, чтобы избежать траты времени, нервов и, главное, немалых денег. Попробуем разобраться, какие бывают неисправности у дизелей, от чего они возникают и как с ними бороться.

Приобретая дизельный автомобиль, многие обращают внимание только на низкий расход недорогого топлива, забывая об объективно больших затратах на эксплуатацию и ремонт, хотя к этому надо быть готовым.

Возможные неисправности двигателей можно разбить на следующие группы по причинам возникновения: конструктивно-производственные недостатки или особенности двигателя; неквалифицированное обслуживание и неграмотная эксплуатация; низкое качество дизтоплива; «естественный» износ двигателя и топливоподающей аппаратуры; низкое качество ремонта и запасных частей.

Рассмотрим наиболее распространенные модели двигателей именно с точки зрения перечисленных проблем.

Конструктивно-производственные факторы

Сразу оговоримся, что все достаточно надежны, а недостатки, связанные с их конструкцией или технологией производства, проявляются, как правило, в тяжелых условиях эксплуатации и при пробегах, превышающих назначенный заводом ресурс или близких к нему. И никак иначе, в противном случае избалованные хорошей техникой и сервисом зарубежные потребители разорили бы заводы-изготовители судебными исками. А вот попадая в Россию, дизельные иномарки как раз и сталкиваются с тяжелыми условиями эксплуатации и, имея, как правило, очень приличный пробег, охотно проявляют все конструктивные недоработки.

Двигатели фирмы VW, к примеру, имеют головку блока цилиндров, в которой часто обнаруживается целый ряд дефектов. Так, в ней нередко образуются трещины. Завод-изготовитель даже допускает эксплуатацию с межседельными трещинами шириной до 0,5 мм.

Помимо этого, нередки случаи выпадения форкамер, приводящие к повреждениям двигателя. А это уже требует серьезного ремонта. Ко всему прочему, приливы под крепление форкамер откровенно слабые, и при неаккуратном снятии или установке форсунок сразу ломаются.

Конструктивное исполнение редукционного клапана маслонасоса двигателей VW неудачно, и нередки случаи его заклинивания с последующим «раздуванием» и разрушением масляного фильтра и полной потерей смазки при холодном пуске, особенно в условиях низких температур. Сказанное, правда, не относится к насосам шестицилиндровых двигателей D24, у которых применяются шестерни с внутренним зацеплением, и другая конструкция редукционного клапана.

На двигателях объемом 1,6 и 1,9 л неудачно выполнена посадка шкива зубчатого ремня на переднем носке коленвала. При малейшем нарушении посадочной плоскости торца шкива начинается его биение, а к нему еще крепятся довольно тяжелые шкивы навесных агрегатов. Это всегда оканчивается ослаблением посадки и обрывом ремня.

Справедливости ради следует заметить, что повреждение торца возникает при неаккуратном проведении ремонтных работ или нарушении требований по затяжке центрального болта, ставить который необходимо на клей-герметик Loctite.

Двигатели Mercedes подобных конструктивных недостатков не имеют, подтверждая своей надежностью и ресурсом высокую репутацию фирмы. Однако можно считать явно неудачным решением использование роторно-распределительных насосов Lucas на двигателях объемом 2,2 и 2,9 л (модели ОМ 604, ОМ 602.982) на автомобилях C и E классов. Отказы этих насосов нередки, но не столь критичны, и, как правило, даже позволяют доехать до сервисной службы. Рядные насосы Bosch при износе плунжерных пар и кулачкового вала дают увеличение неравномерности подачи и характерный «тракторный» звук на холостых оборотах.

Двигатели автомобилей Opel откровенно слабых мест не имеют, однако модели объемом 1,6 и 1,7 л очень чувствительны к снижению давления масла и уменьшению его подачи к подшипникам распредвала и рокерам. Именно поэтому при больших пробегах для двигателей Opel характерны износы кулачков распредвала и рокеров. Ломающиеся рокеры этих двигателей практически никогда не защищают от повреждений клапаны и направляющие втулки, и в случае обрыва ремня всегда приходится менять 3 клапана и столько же направляющих.

В двигателях объемом 2,3 л не очень надежен цепной привод механизма газораспределения, а вертикально расположенный ТНВД чувствителен к негерметичности топливопроводов.

Слабым местом двигателей BMW (2,4 и 2,5 л) является топливный насос высокого давления с электронным управлением и электрооборудование системы управления двигателем. Самый распространенный дефект этих ТНВД — быстрый износ плунжерной пары, проявляющийся в затрудненном горячем запуске, хотя это, видимо, чисто российская проблема, связанная с низким качеством дизтоплива. Очень часто встречаются обрывы электропроводки и нарушение контактов. А износ токосъемных дорожек управляющего электромеханизма ТНВД приводит к колебаниям оборотов холостого хода.

В то же время сам силовой агрегат надежен, обладает хорошей ремонтопригодностью, но предъявляет высокие требования к качеству моторного масла.

Дизели Ford объемом 2,5 л, устанавливаемые на микроавтобусы, зарекомендовали себя как надежные и экономичные силовые агрегаты. Однако система их предпускового подогрева с помощью электрофакельного устройства очень капризна и ненадежна. То же самое относится и к системе рециркуляции отработавших газов.

Двигатели Ford объемом 1,8 л тоже в целом очень неплохи, но главным их недостатком является практически неизбежное разрушение одной или нескольких крышек распредвалов при обрыве ремня ГРМ, после чего требуется замена головки блока.

Современные дизели французского производства требуют очень квалифицированного обслуживания и ремонта. Главный их недостаток трудно отнести к конструктивным — это высокая цена запасных частей, особенно для дизелей Renault.

Итальянские дизели Fiat просты по конструкции, имеют неплохой ресурс, но чувствительны к регулировкам топливной аппаратуры, практически всегда отвечая на их нарушение повышенным износом и вибрацией. То же относятся к дизелям Alfa-Romeo, которые, правда, отличаются более сложной конструкцией. Особенно это характерно для двигателей объемом 2,5 л, имеющих так называемый «туннельный» картер.

У японских дизельных моторов высокий ресурс, они грамотно спроектированы, хотя иногда показывают более низкие запасы прочности кривошипно-шатунного механизма по сравнению с европейцами. Являясь достаточными для обычной эксплуатации, в случае аварийных повреждений их запасы прочности становятся критическими. Например, после разрушения шатунного подшипника валы перед перешлифовкой обязательно должны проверяться на отсутствие трещин, особенно это касается двигателей Isuzu. Другим недостатком, по нашему мнению, являются длинные металлические трубки «обраток», которые, хотя и упрощают конструкцию форсунок, но часто ломаются или заминаются при техническом обслуживании. В последнем варианте резко снижается проходное сечение и возникают проблемы с топливоподачей.

Двигатели Mitsubishi объемом 1,8, 2,3 и 2,5 л имеют балансирные валы, вращающиеся с удвоенной частотой для снижения сил инерции второго порядка. А это требует очень квалифицированного ремонта и серьезного станочного оборудования.

Корейские дизели ведут свое происхождение от японских, поэтому к ним в полной мере относится все вышесказанное.

Американские дизели можно охарактеризовать очень коротко: механика этих восьмицилиндровых монстров надежна, топливная аппаратура, как правило, фирмы Stanadune выполнена на хорошем уровне. Однако на современных двигателях стали устанавливать электронное управление топливоподачей, надежность которого не слишком высока. Резюме таково — если вы решили приобрести американский дизельный джип или мини-вэн — готовьтесь к проблемам с ремонтом, непредвиденным расходам и ожиданию запасных частей.

Неквалифицированное обслуживание и неграмотная эксплуатация

Первая и самая главная причина всех бед — невыполнение регламента эксплуатации. Масло рекомендуется менять через 7500 км вне зависимости от того, какая периодичность указана в инструкции. Это обусловлено повышенным содержанием серы в российском дизтопливе, что приводит к быстрому окислению масла. Качество применяемых масел должно соответствовать требованиям инструкции. Никаких промывок системы смазки при выполнении этих условий не требуется.

Зубчатый ремень привода ГРМ и ТНВД надо менять не реже, чем через 60 тыс. км при условии отсутствия на нем масла. Если масло все же попало на ремень, течь надо немедленно устранить. Необходимо также внимательно следить за топливной системой, например, периодически сливать отстой из топливного фильтра, отворачивая сливную гайку. Топливный бак рекомендуется промывать два раза в год, весной и осенью, полностью его снимая. В актуальности такой процедуры каждый может убедиться самостоятельно, увидев, сколько грязи выльется из бака.

Другая причина, приводящая к повреждениям дизеля, — это попытка запустить его во что бы то ни стало в случаях, когда он запуститься не может. Так, если в баке летняя солярка, а на улице -10°С , попытка пуска бессмысленна: при -5°С уже выпадают парафины и топливо теряет текучесть. Детали топливной аппаратуры, как известно, смазываются топливом, и его отсутствие приводит к сухому трению и их повреждению.

Так что единственный путь в этом случае — искать теплый гараж и отогревать топливную систему. А пускать дизель с буксира вообще не рекомендуется, особенно если ГРМ приводится ремнем. Исправный дизель заводится без дополнительных средств подогрева до -20°С. Если этого не происходит, проще найти и устранить неисправность, чем доводить мотор до капитального ремонта.

Не стоит также разбавлять солярку бензином без крайней на то необходимости — износы топливной аппаратуры из-за ухудшения смазки и самого двигателя из-за нарушения процесса сгорания резко возрастают.

Эксплуатируя дизельный автомобиль, важно помнить, что его двигатель не любит высоких оборотов. Длительные поездки на максимальной скорости — еще один способ приблизить капремонт. И в заключение стоит сказать о том, что прогревать дизельный двигатель крайне необходимо. Конечно, не до рабочей температуры, но хотя бы 5 минут.

Качество дизельного топлива

По статистике примерно 50% неисправностей и поломок топливной аппаратуры вызываются качеством топлива. Причем не высоким содержанием серы и отклонением по цетановому числу. Это еще можно было бы пережить, так как негативные последствия растянуты во времени. А вот элементарное наличие воды и механических примесей в топливе губительны. Причем заправка импортным топливом, которое в 3 раза дороже, не спасает, но зато сведет на нет все экономические преимущества дизеля. Солярка там может быть и финская, но емкости для нее все равно не моются. И эффективного спасения от этой чисто российской беды пока не найдено.

Некоторые, правда, советуют отстаивать солярку в бочке. Это, конечно, довольно эффективно, но у многих ли есть такая возможность? Хочется отметить, что только рядные насосы двигателей Mercedes в состоянии без видимых последствий переваривать ту дрянь, которой нас заправляют.

«Естественный» износ

Износ двигателя и деталей топливной аппаратуры после большого пробега в ряду неисправностей занимает далеко не последнее место. Основная проблема связана обычно со снижением компрессии из-за износа поршневой группы. В этом случае двигатель плохо запускается в холодную погоду даже при полностью исправных свечах накаливания и зимнем топливе. При этом он легко заводится с буксира и, будучи прогретым, не доставляет проблем с запуском. Для справки отметим, что нижняя граница компрессии у большинства двигателей составляет 26 бар.

Другими важными признаками износа двигателя являются повышенные расход масла и давление картерных газов (более 10 мм вод. ст). Регулировками тут уже не помочь и альтернативы капремонту в этом случае нет.

Износ распылителей форсунок приводит к появлению черного дыма на выхлопе и увеличению расхода топлива. Иногда распылитель «закусывает» и издает характерный стук, сопровождающийся появлением едкого белого дыма. При нормальной эксплуатации ресурс распылителей обычно составляет 80 тыс. км.

Длительная эксплуатация двигателя с неисправными распылителями форсунок обычно приводит к прогару форкамер и далее поршней. Часто встречаются и износы плунжерных пар ТНВД, обычно сопровождающиеся затруднением запуска горячего двигателя.

Последствия некачественного ремонта

Ремонт требует хорошего знания особенностей конструкции ремонтируемого мотора и добросовестного выполнения инструкции по ремонту, а также качественных запчастей. Попытки отремонтировать подешевле у «гаражных» мастеров с использованием запасных частей неизвестного происхождения чаще всего приводят к потерянным деньгам, а то и к загубленному двигателю.

Рассмотрим некоторые типовые ошибки.

При обрыве ремня ГРМ бессмысленно пытаться установить новый без снятия и ремонта головки блока т. к. клапаны «встречаются» с поршнями на любом дизеле. При этом хотя бы 3 клапана потребуют замены. Исключения немногочисленны: только у двигателей Renault 2,1 и Ford 2,5 л при ударе поршней по клапанам ломающиеся рокеры и деформированные штанги привода клапанов достаточно надежно предохраняют клапаны от повреждений.

В случае ослабления посадки вихревых камер в головках блока двигателей VW, Peugeot, BMW пытаться закернить их бессмысленно — они все равно выпадают. Надо менять головку блока.

Установка головки на блок двигателей VW без центрирующих втулок недопустима — перекос головки с последующим прогаром прокладки почти неизбежен.

Попытка отделаться заменой поршневых колец при износе цилиндров свыше 0,1 мм бессмысленна — новые кольца пройдут не более 10 тыс. км, а обычно еще меньше. Столь же бесполезна установка новых номинальных поршней без расточки блока цилиндров. Единственно верное решение — расточить блок под ремонтный размер. Замена колец обычно требуется только в случае сильного перегрева двигателя и потери ими упругости.

В случае разрушения шатунного вкладыша или его проворачивания (это сопровождается перегревом нижней головки шатуна) шатун требует обязательного ремонта или замены, иначе двигатель опять «застучит» на первой же тысяче километров.

Ремонт топливной аппаратуры «на коленке» невозможен. Для сколько-нибудь успешного ремонта ТНВД нужны стенды, спецприспособления, технологические карты и механики, знающие особенности ремонта насосов данной модели. При невыполнении этих условий насос будет скорее всего загублен безвозвратно.

Правильно отремонтированный и собранный двигатель заводится без особых проблем стартером. Если мотор не заводится, необходимо искать причину, а не таскать автомобиль на веревке многие километры. Буксир — вернейший способ угробить только что собранный двигатель.

И в заключение обращаем ваше внимание на таблицу основных неисправностей двигателей и причин, их вызывающих. Надеемся, она поможет и автовладельцам, и механикам, которые имеют дело с дизельными моторами.

Ослабление посадки вихревой камеры обычно требует замены головки.

ГРИГОРИЙ ЦВЕЛЕВ

В предыдущих номерах журнала (см. «АБС-авто», декабрь 1998 г., январь 1999 г.) мы рассмотрели общие особенности конструкции, эксплуатации и ремонта наиболее распространенных дизельных моторов. Но каждая марка или модель, очевидно, имеет свои, присущие только ей черты «характера», часто определяющие технологию обслуживания дизелей. Поэтому мы сочли целесообразным подробно остановиться на дизелях каждой из популярных в России марок автомобилей. Безусловным лидером в популярности являются сейчас автомобили VW (Фольксваген), с их двигателей мы и решили начать более конкретное знакомство.

Концерн стал устанавливать дизельные двигатели на легковые автомобили сравнительно давно — со второй половины х годов. С го года дизели VW стала устанавливать на свои автомобили 2,7,8,й серий шведская фирма Volvo. Все дизели выпуска до начала х годов отличают широкая унификация, простота конструкции и эксплуатации, что позволяет осуществлять большой спектр ремонтных работ в неспециализированных мастерских.

Условно моторы VW можно разделить на четыре основные группы: четырехцилиндровые вихрекамерные объемом 1.5, 1.6, 1.7, 1.9 л, атмосферные и с турбонаддувом; пятицилиндровые вихрекамерные объемом 2.0, 2.4 л в основном атмосферные (только один из них с турбонаддувом); шестицилиндровые вихрекамерные объемом 2.4 л атмосферные и с турбонаддувом; пятицилиндровые последнего поколения с непосредственным впрыском, турбонаддувом, окислительным нейтрализатором, рециркуляцией ОГ и электронным управлением ТНВД.

Двигатели первой группы являются наиболее распространенными и устанавливаются на автомобили VW Golf, Passat, Audi 80, Seat, Skoda.

После пробега 200 тыс. км дизели VW обычно требуют достаточно серьезного ремонта с расточкой блока цилиндров, хотя известны случаи межремонтных пробегов до 400 тыс. км при аккуратной эксплуатации. При меньших пробегах часто встречающейся неисправностью является обрыв зубчатого ремня ГРМ, однозначно приводящий к повреждению клапанов и требующий ремонта головки блока цилиндров. Это происходит, как правило, из-за нарушения сроков замены ремня (60 тыс. км), заклинивания вала ТНВД от попадания воды и грязи в топливо, повреждения или заклинивания ролика натяжителя ремня ГРМ, ослабления посадки зубчатого шкива на коленвалу либо повреждения его шпоночного паза.

Замену ремня ГРМ рекомендуется производить вместе с заменой ролика натяжителя, ресурс которого сопоставим с ресурсом ремня. Следует помнить, что попадание масла на ремень ГРМ резко снижает срок его службы.

При установке нового ремня необходимо знать, что выставить его по меткам на двигателях VW невозможно (!), так как существует только одна метка — ВМТ (ОТ).

Шестерня привода распредвала имеет произвольную бесшпоночную конусную посадку на распредвалу и окончательно затягивается после установки приспособления 2065А в торец распредвала и приспособления 2064 в отверстии шестерни ТНВД при положении первого цилиндра в ВМТ.

Контроль натяжения ремня после установки желательно производить с помощью спецприспособления VW 210.

После установки ремня регулируется угол опережения впрыска с помощью индикатора приспособления 2066(рис. «в»). Нужное значение момента начала подачи устанавливается поворотом ТНВД. Мы понимаем, что перечисление номеров приспособлений звучит не очень красиво, но по-иному тут нельзя. Если не использовать набор этих несложных устройств, то невозможно точно установить момент начала подачи и обеспечить оптимальные тяговые и экономические характеристики автомобиля.

При ремонте головки блока цилиндров после обрыва ремня рекомендуется заменять весь комплект клапанов, так как нередко деформации их стержней после касания поршней остаются вроде бы незначительными, но на высоких оборотах такой клапан «подкусывает» в направляющей втулке и получает удар поршнем уже со всеми вытекающими отсюда последствиями.

Признаками приближающегося капремонта являются затрудненный холодный пуск и возросший расход масла (более 1 л на 1000 км). В этом случае следует замерить компрессию на холодном двигателе, которая должна быть не ниже 25 атм у вихрекамерных дизелей VW и не ниже 20 атм у дизелей с непосредственным впрыском (при разбросе не более 5 атм в разных цилиндрах).

Исправный двигатель может плохо заводиться и неустойчиво работать на прогреве из-за неисправностей системы предпускового подогрева. Тогда следует проверить наличие напряжения на свечах, и, если оно есть, отсоединить общую шину, прозвонить тестером каждую свечу по отдельности. Перегоревшие свечи обычно имеют обрыв. Если свеча имеет оплавленный электрод, то причиной этого является неисправная форсунка.

Когда на свечи не подается напряжение, то нужно проверить реле управления свечами и цепи его питания. Часто оказывается перегоревшей плавкая вставка — предохранитель свечей на 50 А.

Топливная аппаратура четырехцилиндровых двигателей достаточно проста в эксплуатации и регулировках, но все же требует для обслуживания специальных приборов и стендов.

При снятии и замене форсунки необходимо каждый раз устанавливать новые теплоизолирующие шайбы между форсунками и головкой цилиндров. Если этого не сделать, то распылитель быстро выйдет из строя от перегрева.

Неисправный распылитель обычно издает характерный стук на работающем моторе, хотя возможны и другие проявления неисправности. Так, в случае естественного износа игл распылителей снижается давление открытия форсунок. Становится нечеткой отсечка при завершении впрыска, что проявляется черным дымом на «прогазовках» и под нагрузкой при одновременном росте расхода топлива. Менять в этом случае рекомендуется весь комплект распылителей, обязательно регулируя на стенде заданное давление открытия.

На двигателях выпуска после 1986 г. выполнен подогрев топливного фильтра с помощью трубопровода «обратки», проходящего через фильтр. Через пластмассовый штуцер крепления этого трубопровода нередко возникает подсос воздуха, сопровождающийся появлением резких стуков и едкого сизого дыма. Обнаружить подсос воздуха поможет прозрачный топливопровод от фильтра к входному штуцеру ТНВД.

Насосы высокого давления на четырехцилиндровых моторах устанавливались типа VE фирмы Bosch и крайне редко CAV Lucas. На ТНВД этого типа часто наблюдается выход из строя насоса низкого давления (подкачивающего). При этом двигатель самопроизвольно глохнет, не развивает полной мощности, обороты плавают. Этот дефект обычно связан с попаданием воды и грязи в топливо, что вызывает износ деталей или их коррозию в случае длительной стоянки автомобиля.

Другая распространенная неисправность — износ кулачковой шайбы и роликов. Признаками этого являются самопроизвольное изменение момента начала подачи топлива и появление мелкой металлической пыли в насосе, — ее хорошо видно, если снять отсечной клапан. Ремонт насоса при этих неисправностях возможен только в условиях специализированной мастерской.

При обычной эксплуатации иногда требуется регулировка оборотов холостого хода и режима увеличения числа оборотов холодного запуска. При отсутствии стенда для проверки ТНВД возможна также грубая регулировка величины подачи с помощью дымомера в режиме измерения пикового значения дымности. В этом случае двигатель регулируется по границе дымности, почти совпадающей на вихрекамерных моторах с их внешней характеристикой (по максимальному крутящему моменту). Кстати, во всех случаях ремонта топливной аппаратуры из-за попадания воды следует сменить топливный фильтр и тщательно промыть бак.

Пятицилиндровые вихрекамерные дизели серии CN, DE, NC объемом 2.0 л устанавливались только на автомобили Audi-100 до 1990 г.; двигатели AAS и AAB объемом 2.4 л по конструкции практически идентичны, но первый ставился на Audi-100 94 гг., а второй — на VW Т4. Многие детали дизелей 2.0 л унифицированы с деталями дизелей семейства 1.6 л, а дизелей 2.4 л — с деталями моторов 1Х и 1Y объемом 1.9 л.

Для привода ГРМ и ТНВД у рассматриваемых моторов применяются раздельные ремни.

Периодичность замены ремня ГРМ такая же, как у четырехцилиндровых двигателей — 60 тыс. км. При этом следует обращать внимание на состояние подшипников водяного насоса, а при малейшем сомнении водяной насос нужно менять. То же относится и к промежуточному ролику.

Установка ремня производится при снятой шестерне привода ТНВД с помощью приспособления 2065А и затруднений обычно не вызывает. Шестерню привода распредвала, имеющую коническую посадку, следует сперва ослабить, а затем, после установки фаз, зафиксировать в новом положении. Окончательно натяжение ремня следует проверить приспособлением VW210.

При установке ремня ТНВД используется приспособление 2064. Натяжение регулируется перемещением крепежной плиты ТНВД вверх или вниз. После установки ремня производится окончательная регулировка начала подачи с помощью индикаторного приспособления 2066.

Топливная аппаратура пятицилиндровых двигателей производства Bosch не имеет принципиальных отличий от аппаратуры четырехцилиндровых, и ей свойственны те же самые дефекты. Кроме того, нужно отметить, что у насосов двигателей ААВ на Т4 нагружение рычага управления таково, что у него чаще других возникает течь топлива из-под штока рычага вследствие износа резинового уплотнительного кольца и втулки. Как показывает практика, менять только кольцо, не меняя втулки, бесполезно, так как течь возобновится очень быстро. В некоторых случаях приходится менять даже рычаг, имеющий односторонний износ.

Шестицилиндровые двигатели объемом 2.4 л серий D24, DV, DW (атмосферные и с турбонаддувом) применяются на грузовых LT 28, 35 и легковых Volvo. Они идентичны по конструкции, но имеют некоторую разницу, связанную с наличием или отсутствием наддува, компоновочными соображениями и годами выпуска. В то же время некоторые детали, несмотря на внешнее сходство, невзаимозаменяемы, поэтому надо быть внимательным при покупке запчастей, особенно бывших в употреблении.

Привод газораспределительного механизма и ТНВД у двигателей этой серии такой же, как у пятицилиндровых. К срокам замены ремня ГРМ тут надо относиться особенно пунктуально, так как при его обрыве, помимо повреждения клапанов, почти всегда ломается распределительный вал и довольно часто — одна из его крышек крепления, что автоматически влечет за собой срочно ремонтировать распредвала в головке блока или даже ее . Но в целом шестицилиндровые двигатели VW можно отнести к наиболее надежным и долговечным из дизельных моторов этой фирмы. Их фактический межремонтный ресурс редко бывает меньше 250 тыс. км.

С 1991 года на автомобили Audi-100 стали устанавливать пятицилиндровые турбодизели с непосредственным впрыском топлива АВР и ААТ объемом 2.5 л, а на Audi-80 — четырехцилиндровые 1Z объемом 1.9 л. С 1993 г. двигатель 1Z появился и на автомобилях VW Golf, Vento, Passat. В дальнейшем эти моторы были модифицированы и получили индексы AEL (2.5 л) и AHU (1.9 л). С 1995 г. появилась безнаддувная версия мотора 1.9 л — AEY, а двигатель 2.5 л с индексом D5252T стал с 1996 г. ставиться на Volvo 850 (S70).

Двигатели этой группы являются непревзойденными лидерами в своем классе по топливной экономичности и обладают отменными тяговыми характеристиками. По конструкции силового агрегата они — прямые потомки четырех- и пятицилиндровых вихрекамерных моторов VW с учетом, естественно, серьезных различий в конструкции поршней и головок блоков. Наибольшее отличие у них в системе впрыска и управления двигателем. Эти моторы имеют ТНВД с электронным управлением, то есть полностью отсутствует механическая связь между педалью газа и двигателем. Сигналы, формирующие количество подачи и момент начала впрыска, рассчитываются микропроцессором по сигналам датчиков оборотов, температуры, давления наддува, положения педали газа и других.

Форсунки тоже отличаются по конструкции: на вихрекамерных моторах они со штифтовым распылителем, а на новых двигателях — многоструйные. Распылители этих форсунок не поставляются в запасные части, и в случае неисправности форсунка заменяется целиком. Это дорого, и утешает только то, что менять их приходится гораздо реже, чем на вихрекамерных моторах. Система управления двигателем достаточно надежна, отказы электроники редки и чаще всего связаны с окислением контактов в разъемах. Механическая часть электронного ТНВД страдает по-прежнему от попадания воды и грязи, хотя какие тут могут быть претензии к производителю?

Диагностика двигателя и топливной аппаратуры, в отличие от моторов предыдущего поколения, невозможна в условиях неспециализированной мастерской, не имеющей сканера для считывания кодов неисправностей (VAG1551) и электронной приставки Bosch для регулировки ТНВД на стенде.

Замена ремня ГРМ на этих моторах проводится с той же периодичностью, как и на других моторах VW — через 60 тыс. км. Технология замены аналогична рассмотренной ранее. Единственное отличие в том, что на пятицилиндровых двигателях натяжение ремня осуществляется роликом, а не помпой, что упрощает замену.

И в заключение следует отметить некоторые общие правила, которые необходимо соблюдать при проведении капитального и среднего ремонта двигателей VW:

— прокладки головки блока поставляются в запасные части трех толщин. Толщина прокладки определяется по выступанию поршней в положении ВМТ над плоскостью блока цилиндров. Если нет прокладки нужной толщины, можно смело ставить более толстую. Замена же на более тонкую, чем полагается, недопустима;

— шлифовка или фрезеровка плоскости блока на дизельных двигателях VW не допускается;

— у дизелей VW на блоке отсутствуют центрирующие втулки, поэтому для правильной установки прокладки и головки следует пользоваться ложными втулками 3070, иначе неизбежен перекос головки;

— в головке блока цилиндров допускаются трещины между седлами клапанов, но шириной не более 0,5 мм;

— предельно допустимый износ блока цилиндров для всех моторов — 0,10 мм, предельная эллипсность и конусность — 0,05 мм. Если износ превышает указанные значения — расточка блока обязательна;

— при проведении ремонта моторов VW рекомендуется производить замену маслонасоса. Особенно это касается четырехцилиндровых двигателей;

— втулки промежуточного вала четырехцилиндровых двигателей требуют обязательного контроля, а при их замене необходимо проверять размеры посадочных мест;

— на четырехцилиндровых моторах нередки случаи сползания ремня ГРМ из-за износа опорных втулок вала ТНВД. Помимо естественного износа это вызывается работой двигателя с перетянутым ремнем.

 

Таблица определения толщины прокладки

Толщина

Выступание поршней над блоком

Вихрекамерные

С непосредственным впрыском

1Z, AHV

ABP, AAT, AEL

1

0,0,80

0,1,00

0,1,01

2

0,0,90

1,1,10

1,1,05

3

0,1,02

1,1,20

1,1,13

 

Оплавление свечи накаливания обычно является следствием неисправности форсунки.

Стенд для проверки форсунок — обязательный атрибут СТО, специализирующейся на обслуживании дизелей.

Без специального стенда ремонт топливных насосов высокого давления невозможен.

Форсунки дизелей VW последнего поколения (слева) существенно отличаются от форсунок, устанавливавшихся на двигателях прошлых лет (справа)

ГРИГОРИЙ ЦВЕЛЕВ   Рассмотрев особенности эксплуатации и ремонта диельных моторов VW (см. «АБС-авто», 1999, № 2), перейдем теперь к хорошо известным у нас дизелям знаменитой фирмы Mercedes-Benz.

Фирма Mercedes-Benz является пионером применения дизельного мотора на легковом автомобиле. В 1935 году появилось на свет такси Mercedes 260 (кузов W170) c дизелем первого поколения ОМ636 мощностью 43 л. с. С той поры прошло много лет, но и по сей день дизели Merсedes остаются синонимом надежности и долговечности. Эти моторы отличаются консервативной, доведенной до совершенства конструкцией, большим запасом прочности и отличными конструкционными материалами, хотя они несколько уступают двигателям других фирм по удельному весу, экономичности, мощности.

Второе поколение легковых дизелей ОМ621 объемом 2.0 л появилось в 1961 году и в 1968 году было заменено двигателями нового семейства ОМ615 объемом 2.0 и 2.2 л. Рассматривать конструкцию и эксплуатацию «мерседесовских» дизелей имеет смысл именно с этого поколения моторов, так как предыдущие почти неизвестны в нашей стране и представляют интерес в основном для любителей автостарины.

С моторами ОМ615 и его модификациями по нашим дорогам ездят тысячи легковых и грузовых автомобилей. Эта серия выпускается и поныне (правда, уже не в Германии) и имеет следующие модификации: ОМ615 (2.0 л и 2.2 л) — устанавливались на легковые «мерседесы» W115, W123; ОМ616 (2.4 л) — на легковые W115, W123, грузовики 207D, 307D, 407D и их модификации; пятицилиндровые ОМ617 (3.0 л) — на легковые W115, W123, грузовики 209D, 409D, а ОМ617 с турбонаддувом — на W123, W126.

Все эти моторы практически идентичны, но различаются диаметром цилиндров и ходом поршня. По конструктивной схеме предкамерные, верхневальные с регулируемым зазором клапанов и приводом клапанов рычагами. Привод распредвала и ТНВД осуществляется двухрядной цепью с гидронатяжителем. Следует отметить, что цепной привод применяется на всех без исключения двигателях Merсedes, ведь надежность для них превыше всего. Топливные насосы высокого давления применяются только Bosch рядные, моделей М, MW и M/RSF. Насосы типа М с вакуумным регулятором оборотов имеют индивидуальную систему смазки, требующую периодического обслуживания (через 15 тыс. км), все остальные смазываются маслом от двигателя.

Свечи накаливания до 1980 года применялись спиральные, последовательного соединения, а с 09.1980 — стержневые быстрого накала и с параллельным соединением. При сгорании хотя бы одной спиральной свечи в системе возникает обрыв цепи, и она перестает работать, о чем свидетельствует отсутствие индикации на приборной панели.

При сгорании стержневой свечи цепь не нарушается, и остальные свечи действуют. Индикация в этом случае работает следующим образом: при повороте ключа зажигания желтая спираль не загорается, а зажигается после запуска, горит 20 сек и затем гаснет.

Предкамеры на этих моторах бывают двух типов — с плоским и со сферическим днищем. Моторы со сферической предкамерой имеют другую форму днища поршня, причем оптимизация рабочего процесса позволила получить 10%-ное повышение мощности и снижение шума по сравнению с плоской предкамерой.

В целом моторы этого поколения исключительно надежны и не имеют явно выраженных недостатков, не считая разве больших габаритов и веса, а также сальниковой набивки на заднем конце коленвала, имеющей ограниченный срок жизни.

Ресурс двигателей данной серии превышает 400 тыс. км, и даже известны случаи пробега 800 тыс. км без серьезного ремонта. Да и в ремонт они обычно приходят не из-за аварийных повреждений, а не с естественным износом цилиндропоршневой группы. При этом в большинстве случаев коленчатый вал оказывается в идеальном состоянии и не требует даже перешлифовки (за исключением случаев масляного голодания).

Следует, однако, помнить о том, что ресурс цепи и ее успокоителей редко превышает 200 тыс. км, поэтому ее нужно своевременно менять, обращая внимание и на состояние звездочек.

Топливные насосы также очень надежны и редко выходят из строя по причине аварийных повреждений. Самые частые неисправности — выход из строя подкачивающей помпы из-за износа уплотнений (крепится сбоку на ТНВД) и разрыв мембраны привода рейки на насосах М с вакуумным управлением.

Проведение этого ремонта не требует стендовой регулировки ТНВД. Угол опережения впрыска устанавливается либо статическим методом по трубопроводу слива, либо динамическим с подключением стробоскопа или мотортестера.

В 1983 году на смену этому поколению дизельных моторов пришла серия ОМ601, 602, 603, объемом 2.0, 2.5, 3.0 л соответственно. Их главные особенности — гидравлические толкатели в приводе клапанов, алюминиевая головка блока цилиндров, насос высокого давления с автоматической прокачкой для удаления воздуха. Эти моторы более высокооборотны, отличаются меньшей шумностью, большей литровой мощностью и экономичностью.

В то же время они требуют существенно более квалифицированного обслуживания. На двигателях нередки отказы гидротолкателей из-за ухудшения условий смазки, сопровождающегося характерным стуком клапанов.

Несвоевременная замена цепи и успокоителей может привести к ее обрыву, что очень часто полностью выводит из строя головку блока (на двигателях предыдущей серии обычно ломало распредвал, но головка оставалась целой). Поэтому механизм газораспределения надо периодически проверять.

Блок цилиндров обладает прекрасной износостойкостью и обеспечивает двигателям ресурс 500 тыс. км в зависимости от объема (большая цифра относится к шестицилиндровым). Гильзы цилиндров до 1989 года вставные сухие, после 1989 — моноблок. При ремонте следует контролировать верхнюю плоскость блока (допуск в продольном направлении — 0,10мм; — в поперечном направлении — 0,05мм), так как нарушения плоскости встречаются примерно у 20% моторов с пробегом более 400 тыс. км.

В блоке для улучшения охлаждения в зоне прокладки головки выполнены очень узкие продольные пазы между цилиндрами. Они часто забиваются настолько, что ухудшается охлаждение и возникают прогары прокладки. По-этому недопустимо пренебрегать требованиями инструкции по применению охлаждающей жидкости и тем более — использовать воду.

Частым дефектом является появление течи масла из-под крышки вакуумного насоса усилителя тормозов и управления двигателем (на моторах старого типа этот дефект встречался реже).

Навесные агрегаты приводятся одним многоручьевым ремнем, у которого довольно часто выходит из строя подшипник натяжного ролика. Внешне дефект сразу заметен по перекошенному положению ролика, сопровождается нестабильным стуком, иногда угрожающей тональности.

Топливная аппаратура этих двигателей с рядными насосами Bosch типа М/RSF еще надежнее, чем на двигателях предыдущих серий, и в эксплуатации отказы ее крайне редки. Неисправности обычно связаны с вакуумной системой управления ТНВД. Привод рейки механический, но выключение двигателя (перевод рейки в положение Stop) производится разряжением от вакуумного насоса, подаваемым через замок зажигания. Довольно часто выходит из строя мембрана вакуумного привода Stop, и двигатель не глушится ключом зажигания.

Но такая система выключения двигателя все же повышает его надежность, так как даже полностью обесточенный дизель Merсedes будет продолжать работать, в то время как любой другой автомобиль заглохнет, как только исчезнет напряжение на отсечном клапане ТНВД.

С помощью вакуума также производится повышение оборотов холостого хода (на

100 об/мин) на режиме прогрева холодного двигателя. Вакуум подводится к мембране ТНВД через термореле, закрывающееся при 17°С. На части моторов вакуумная камера отсутствует и применена система электронной стабилизации холостого хода.

На двигателях 603.971 объемом 3.5 л (Mercedes G463, W140) применено электро-управление рейкой ТНВД по сигналам от электронного блока управления.

Характерным недостатком всех этих насосов, раздражающим владельцев автомобилей с большим пробегом, является повышенная неравномерность цикловой подачи, вызывающая «тракторный» стук мотора на холостых оборотах из-за износа плунжеров и кулачкового вала. Кроме неприятных ощущений, особого вреда это не приносит.

Турбонаддувные моторы этой серии очень чувствительны к вязкости и классу применяемого масла. Менять масло в них следует не реже, чем через 7500 км, так как оно очень интенсивно окисляется.

С 1993 г. фирма Merсedes-Benz впервые в мире начала производство легковых дизельных моторов с четырьмя клапанами на цилиндр. Это моторы серии ОМ604, 605,606 объемом 2.2; 2.5; 3.0 л соответственно, устанавливаемые на автомобили C и E классов, а мотор ОМ606 с турбонаддувом — на S класс.

Оптимизация рабочего процесса позволила существенно (на 10%) улучшить топливную экономичность и повысить литровую мощность (с 37 до 45 л. с./л) у атмосферных двигателей.

Двигатели этой серии, так же как и предыдущей, максимально унифицированы между собой. С 1996 года они были дополнены пятицилиндровыми турбодизелями ОМ602.982 с непосредственным впрыском топлива мощностью 129 л. с. Этот двигатель имеет уникальные характеристики по экономичности (7,9 л/100 км в городском цикле для E класса), высокий крутящий момент на низких оборотах и довольно тихо работает, несмотря на прямой впрыск.

На двигателях ОМ605, 606 применяются рядные ТНВД Bosch типа M/RSF с электронным управлением, а на двигателях ОМ604, ОМ602.982 — ТНВД Lucas EPIC распределительного типа с электронным управлением.

Статистика по неисправностям этих моторов пока еще недостаточна, однако следует отметить, что ресурс цепи четырехклапанных моторов ниже, чем у моторов с одним распредвалом (были случаи, когда ее замена требовалась уже при пробеге 150 тыс. км).

Двигатели снабжены системой рециркуляции отработавших газов и окислительным нейтрализатором. Нередко возникают сбои в работе системы рециркуляции, обычно вызываемые неисправностями управляющей электроники. К сожалению, диагностика системы управления этих моторов без специальных сканеров (ННТ, Bosch KTS 300, Laser 2000) невозможна.

ТНВД Lucas EPIC более капризны, чем рядные Bosch, они очень чувствительны к подсосу воздуха в топливных магистралях, чему способствуют пластмассовые быстроразъемные штуцеры, появившиеся на этих моторах.

В целом можно отметить, что с каждым новым поколением дизелей Merсedes растет их совершенство, но ухудшаются эксплуатационная надежность и ремонтопригодность. Хотя это заключение справедливо только для российских условий эксплуатации. Ведь там, где развита сервисная сеть, усложнение конструкции никакого значения для владельца не имеет, тем более, что в целом надежность дизельных «мерседесов» любых поколений может считаться эталонной.

Свечи накаливания двигателей Mercedes выпуска до 1980 г. (слева) и после (справа).

Форкамеры от более новых двигателей Mercedes (слева) не взаимозаменяемы с форкамерами старого образца (справа).

При ремонте двигателей Mercedes рекомендуется проверять состояние продольных пазов между цилиндрами.  

СЕРГЕЙ ГАЗЕТИН

Прежде чем говорить об электронной диагностике, необходимо хотя бы в общих чертах пояснить, как работает современная система управления двигателем и, в частности, непосредственно блок управления. При этом для нас сейчас наиболее важно то, что блок управления обладает функциями самодиагностики, то есть способностью получать и хранить информацию об отказах и отклонениях в работе системы.

Итак, блок управления получает необходимую информацию от совокупности различных датчиков. После ее обработки путем аналого-цифрового преобразования эта информация, а также данные, хранящиеся в ПЗУ блока (различные матрицы, таблицы и т. п.) используются микрокомпьютером для расчета параметров управляющих сигналов: например, длительности впрыска, угла опережения зажигания и других.

Однако микрокомпьютер не только управляет двигателем, но также непрерывно осуществляет проверку «правдоподобности» параметров входных и выходных сигналов, т. е. сравнивает их с определенными границами (допусками), в которых они должны находиться. В случае выхода того или иного параметра за пределы допуска программа работы микрокомпьютера меняется. В специальную область памяти записывается цифровой код данной неисправности, а программа управления изменяется таким образом, чтобы максимально скомпенсировать, если это возможно, последствия неисправности, т. е. осуществить так называемое резервирование. По степени влияния на работу двигателя неисправности или отклонения могут иметь различный «вес», поэтому реакция программы компьютера и последствия также могут быть различны. Одни неисправности вызывают полную остановку двигателя, другие — резкое ухудшение ездовых характеристик, третьи практически незаметны. В любом случае почти все современные (1983—1998 гг.) блоки управления позволяют тем или иным способом получить, т. е. считать из памяти, информацию об отказе в виде цифрового кода. На автомобилях выпуска до начала х годов коды отказов, как правило, можно было считывать по вспышкам специальных ламп-индикаторов (Check Engine и им подобных). В более поздних системах это возможно только с помощью специальных приборов, которые получили устоявшееся название «сканер».

Самостоятельный анализ и поиск неисправностей в контролируемой системе — очень важная и мощная функция блока управления. Однако это еще не все. Объективно микрокомпьютер не может выявить все неисправности двигателя. Ведь двигатель — это комплекс многих систем и подсистем — механика, топливоподача (гидравлика), охлаждение, смазка, подсистемы уменьшения токсичности (рециркуляция, инжектирование вторичного воздуха) и т. п. Вполне очевидно, что неисправности элементов, относящихся к самой системе управления, включая датчики, исполнительные механизмы и проводку, микрокомпьютер выявляет достаточно эффективно.

Однако неисправности, не связанные напрямую с электроникой, не всегда могут быть «вычислены» и формализованы в виде цифрового кода. И уже, конечно, не надо ждать от блока управления разного рода чудес: определить, почему двигатель стучит или «ест» масло, он не сможет.

Кроме уже готовых «решений» о неисправности в цепи конкретного компонента или отклонений в работе системы, записанных в виде кода, большинство современных блоков управления могут выдавать также дополнительную информацию. Она представляет те самые параметры (входные и выходные сигналы, внутренние параметры системы), которые непрерывно обрабатываются компьютером блока управления. Вся эта информация в закодированном цифровом виде передается на диагностический разъем блока управления. Анализ этой информации позволяет квалифицированному диагносту обнаруживать не только неисправности сложного характера, но и выявить отклонения как в работе самой системы управления, так и других подсистем, например, охлаждения, зажигания, топливоподачи (гидравлика) и т. п. А считана и раскодирована информация может быть только при наличии сканера — того самого прибора, о котором мы собираемся поговорить.

Как устроен и работает сканер

Сканер представляет собой портативный прибор, выполненный обычно на базе специализированного микропроцессора, и обязательно имеет клавиатуру и дисплей (обычно жидкокристаллический).

Основная функция сканера — «распаковка» и раскодирование цифрового массива, поступающего на диагностический разъем из блока управления проверяемой системы (например, системы управления двигателем, АБС тормозов, КПП и т. д.). Как уже говорилось выше, это могут быть коды отказов из памяти блока или непрерывно обновляемые данные (цифровые параметры), обрабатываемые микрокомпьютером блока.

Анализ этой информации позволяет диагносту быстро и эффективно находить неисправности в проверяемой системе.

Кроме пассивного отображения тех или иных параметров теституемой системы сканеры могут подавать специальные команды, т. е. работать в так называемом интерактивном режиме. Это означает, что непосредственно с клавиатуры сканера можно включать или, наоборот, выключать те или иные элементы, например, форсунки, или даже задавать блоку управления специальные режимы работы.

Какие сканеры существуют на рынке

Из сказанного выше следует, что сам сканер является не слишком сложным прибором. Его функции легко может выполнить любой ноутбук. Кстати, соответствующие программы для РС существуют, но пока этот вариант не может конкурировать со специализированными приборами в удобстве пользования, надежности, широте охвата автомобилей и систем.

Наибольший интерес представляет программное обеспечение сканера. Это информация по расшифровке цифровых протоколов обмена по сотням моделей и систем автомобилей, хранящаяся, как правило, в ПЗУ специальных картриджей, или как их еще называют, программных модулей. Таких модулей может быть несколько — все зависит от степени универсальности сканера. Для примера: на двух картриджах сканера Enhanced Monitor (фирма ОТС) хранится информация, позволяющая раскодировать протоколы обмена для 45452 различных систем управления автомобилей General Motors, Ford и Chrysler с 1983 по 1997 гг., включая 30330 систем управления двигателем, 7713 АБС тормозов, 1080 систем управления автоматическими КПП и 5429 других систем.

Среди всех видов диагностического оборудования рынок сканеров имеет, пожалуй, наиболее четкое и даже жесткое разграничение.

Практически каждый производитель автомобилей имеет свой оригинальный сканер, и только он может применяться на сервисной (т. е. дилерской) сети этого производителя.

Дилерские приборы — самые мощные. С их помощью можно осуществлять тестирование всех электронных систем, имеющих возможность выдачи цифровой информации на диагностический разъем (число таких систем на автомобилях высокого класса может достигать нескольких десятков). Кроме описанных выше функций, дилерские сканеры позволяют изменять программу работы системы, осуществлять корректировку, «обучение» и многое другое. Однако большинство этих приборов жестко ориентированы только на одного производителя, т. е. не являются универсальными. Да и покупка такого прибора возможна только для авторизованного дилера.

Напротив, сканеры, которые предлагаются на рынке оборудования для независимых СТО, универсальны, т. е. способны диагностировать большое число моделей самых разных производителей. Хотя, конечно, до 100%-ного охвата пока еще далеко.

Первопроходцами в деле всеобщей компьютеризации автомобиля и, соответственно, компьютерной диагностики, являются американские фирмы. Первые сканеры были сделаны фирмами MPSI и ОТС еще в 1981 году. Фирма ОТС и поныне остается одним из ведущих производителей сканеров на мировом рынке. Главное, что подкупает в американских приборах, да и вообще в подходе американцев к диагностике — это демократичность. Производители автомобилей не препятствуют получению информации по расшифровке протоколов обмена, поэтому она доступна в том числе и производителям диагностического оборудования для независимых СТО (вопрос только в сумме оплаты). Поэтому американские сканеры, как правило, существенно превосходят европейские по многим показателям.

Сканеры американских производителей — ОТС, Snap-On, Vetronix, MPSI, являются в полной мере универсальными. Они позволяют тестировать абсолютно все автомобили американских производителей — GM, Ford, Chrysler, а также большинство моделей, ввозимых в США из Японии и Кореи. Охват тестируемых систем управления также впечатляет — двигатель, КПП, подушка безопасности, подвеска, АБС и некоторые другие.

Фирмы ОТС и Snap-On, захватив большую часть американского рынка, на этом не успокоились и дополнили свои сканеры (модели Auto Scan2/Monitor Enhanced и МТ2500/PDL1000 соответственно) программными картриджами и адаптерами для диагностики автомобилей европейских фирм — BMW, VW/Audi, Opel, Ford, Rover. Правда, список тестируемых систем ограничивается, в основном, двигателем. Из европейских производителей с американцами может конкурировать только одна фирма — Robert Bosch (приборы KTS-300 и KTS-500). Однако эти приборы больше ориентированы на системы управления Bosch и не имеют такого «глобального» охвата.

Обособленной группой стоит несколько моделей сканеров, не являющихся дилерскими формально, но, по сути, поддерживающих большинство необходимых функций, да к тому же на моделях нескольких производителей. Одним из таких приборов является, например, сканер Tech2 Flash, выпускаемый фирмой ОТС по лицензии Hewlett Packard. Если оригинальный прибор Tech2 является дилерским сканером концерна GM, то его двойник Tech2 Flash позволяет тестировать автомобили всей большой тройки — GM, Ford и Chrysler.

Есть подобные приборы для тестирования «европейцев» — Mercedes, BMW, VW, или «корейцев» — Daewoo, Hyundai, Kia. Такие приборы ориентированы на относительно узкий круг производителей, зато имеют более развитые возможности и представляют интерес, в первую очередь, для сложившихся профессионалов. Так или иначе, выбор сканера во многом зависит от специализации СТО на конкретных марках автомобилей. Ну а как конкретно с помощью сканера диагностировать те или иные неисправности в системах управления — тема наших будущих публикаций.

Корейский сканер HISCAN — один из представителей приборов повышенной сложности

Сканеры американских фирм — приборы наиболее универсальные и всеохватывающие

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Еще недавно двигатель работал как часы, но вот упала мощность, увеличились расходы топлива и масла. На холостом ходу стала заметна вибрация - двигатель явно «троит», т.е. один из цилиндров не работает должным образом. И если замена свечей ничего не изменит, в подобных случаях для определения причины неисправности нередко прибегают к измерению компрессии - одному из самых простых и доступных способов диагностики.

Компрессией называют величину максимального давления в цилиндре, создаваемого при холостой прокрутке двигателя стартером (например, при отключении свечи зажигания). Чтобы измерить компрессию, необходимо вместо свечи установить компрессометр. Этот прибор представляет собой манометр, соединенный шлангом со штуцером и обратным клапаном. При вращении коленчатого вала двигателя в шланг нагнетается воздух до тех пор, пока давление в шланге не сравняется с максимальным давлением в цилиндре. Его значение зафиксирует манометр.

Видимая простота и доступность снискали компрессометру славу некоего «универсального» прибора, способного не только определить неисправность, но и вообще оценить техническое состояние двигателя в целом. К сожалению, эта универсальность обманчива - полученные результаты измерений часто требуют специального анализа, и делать по ним однозначные выводы не всегда правильно.

Вот только два тому примера.

Сравнительно новый двигатель не удается запустить. Компрессия в цилиндрах составляет 0,0,6 МПа (6 кг/см2 ), что примерно вдвое ниже нормы. Причинами могут быть механическая поломка или износ деталей цилиндро-поршневой группы. Но такое же падение компрессии будет наблюдаться, если из-за неисправности системы управления в цилиндры поступил избыток топлива. Оно смыло масло со стенок цилиндров, и поршневые кольца перестали надлежащим образом уплотнять полость камеры сгорания.

Другой случай: у старого двигателя измеренная компрессия составляет 1,1,2 МПа. Норма! Однако двигатель расходует масла свыше 1 л на 1000 км. Оно и понятно, если принять во внимание износ колец, поршней и цилиндров. В чем же дело? Да просто большое количество масла, проникающего в камеру сгорания, хорошо уплотняет зазоры между изношенными деталями.

Как видим, к результатам замеров следует относиться с осторожностью. И, чтобы во время ремонта не ошибиться в выводах, следует знать, в каких случаях на результаты измерений можно с уверенностью положиться, а когда - только принять к сведению.

Что влияет на компрессию?

Теоретически максимальное давление в цилиндре в конце такта сжатия, когда поршень находится в верхней мертвой точке (ВМТ), зависит от целого ряда факторов. С точки зрения ремонтной практики они в конечном счете влияют на количество поступающего в цилиндр воздуха - чем оно больше, тем выше компрессия. В первую очередь отметим положение дроссельной заслонки - ее прикрытие или закрытие, очевидно, сильно уменьшит давление в цилиндре. Понятным образом на количество воздуха влияет и степень загрязнения воздушного фильтра.

Некоторые механики допускают ошибки в установке фаз газораспределения, например, при монтаже ремня или цепи привода распределительного вала. Это приводит к изменению момента закрытия впускного клапана, сдвигая начало сжатия в цилиндре в ту или другую сторону. Тогда и значения компрессии будут отличаться.

Довольно сильно на компрессию влияют зазоры в приводе клапанов. Так, малый зазор в приводе впускных клапанов приведет к более позднему их закрытию и, соответственно, к уменьшению компрессии. Одновременно малые зазоры в выпускных клапанах увеличат так называемое перекрытие клапанов - величину угла поворота коленвала, в течение которого открыты одновременно оба клапана в цилиндре. Результат тот же - компрессия уменьшится.

На компрессию повлияет и температура двигателя - чем она меньше, тем сильнее будет охлаждаться воздух, сжимаемый в цилиндре, и тем меньше будет его давление. Кстати, зазоры в приводе клапанов так же будут «следить» за температурой - чем она ниже, тем меньше зазоры и компрессия.

Но и это еще не все. Как только воздух в цилиндре оказывается достаточно сжат, станут проявляться разного рода его утечки через зазоры между изношенными или поврежденными деталями, уплотняющими полость камеры сгорания.

Естественным образом из сказанного вытекают выводы о том, что утечки будут минимальными, если цилиндр имеет идеально круглую форму, отсутствуют продольные риски на его рабочей поверхности, поршневые кольца идеально прилегают к ней и к торцевым поверхностям канавок поршня; если близка к нулю величина зазоров в замках колец и, наконец, тарелки клапанов идеально прилегают к седлам.

Но все мы знаем, ничего идеального в природе не бывает. Какие-то утечки есть всегда, даже у нового двигателя. Вопрос лишь в том, насколько они велики. Поэтому напомним факторы, в той или иной мере влияющие на интенсивность утечек воздуха, а, следовательно, и на компрессию: в первую очередь укажем на температуру двигателя - она повышаясь, увеличивает компрессию,так как детали лучше прилегают друг к другу, принимая размеры и взаимное положение, больше соответствующие рабочим; затем напомним, что масло, поступившее в камеру сгорания через направляющие втулки клапанов, поршневые кольца, систему вентиляции картера и уплотнения турбокомпрессора, существенно повышает компрессию,так как оказывает уплотняющее действие; топливо, поступившее в цилиндр в виде капель, напротив, снижает компрессию, так как разжижает и смывает масло с деталей и не оказывает уплотняющего действия из-за малой вязкости; таким же образом сказываются негерметичность обратного клапана или шланга компрессометра, а также большое усилие пружины обратного клапана; и, наконец, чем больше обороты коленчатого вала, тем меньше утечки через неплотности, тем выше компрессия.

Как правильно измерить компрессию?

Если принять во внимание все перечисленные выше факторы, то при измерениях компрессии надо соблюдать следующие несложные правила: двигатель должен быть «теплым». Подача топлива должна быть отключена. Можно, например, отключить бензонасос, форсунки или использовать другие способы, препятствующие попаданию большого количества топлива в цилиндры; необходимо вывернуть все свечи. Выборочный демонтаж свечей, практикуемый на некоторых СТО, недопустим, так как увеличивает сопротивление вращению и произвольно снижает обороты при прокрутке двигателя стартером; аккумуляторная батарея должна быть полностью заряжена, а стартер - исправен.

Компрессию измеряют как с открытой, так и с закрытой дроссельной заслонкой. При этом каждый из способов дает свои результаты и позволяет определять свои дефекты.

Так, когда заслонка закрыта,в цилиндры, очевидно, поступит мало воздуха, поэтому компрессия будет низкой и составит около 0,0,8 МПа. Утечки воздуха в этом случае сравнимы с его поступлением в цилиндр. Вследствие этого компрессия становится особо чувствительной к утечкам - даже при малых неплотностях ее значение падает в несколько раз. Эта посылка позволяет сделать выводы или предположения о следующих дефектах двигателя: не вполне удовлетворительном прилегании клапана к седлу; зависании клапана, например, из-за неправильной сборки механизма с гидротолкателями; дефектах профиля кулачка распределительного вала в конструкциях с гидротолкателями, в том числе неравномерном износе или биении тыльной стороны кулачка; негерметичности, вызванной прогаром прокладки головки или трещиной в стенке камеры сгорания.

При измерении компрессии с открытой заслонкой картина будет иной. Большое количество поступившего воздуха и рост давления в цилиндре, конечно, способствуют увеличению утечек. Однако они заведомо меньше подачи воздуха. Вследствие этого компрессия падает не столь значительно (приблизительно до 0,0,9 МПа). Поэтому способ замеров с открытой заслонкой лучше подходит для определения более «грубых» дефектов двигателя, таких, как поломки и прогары поршней, поломки или зависание (закоксовывание) колец в канавках поршня, деформации или прогары клапанов, серьезные повреждения (задиры) поверхности цилиндров.

В обоих способах измерения желательно учитывать динамику нарастания давления - это поможет установить истинный характер неисправности с большей вероятностью. Так, если на первом такте величина давления, измеряемая компрессометром, низкая (0,3 -0,4 МПа), а при последующих тактах резко возрастает, - это косвенно свидетельствует об износе поршневых колец. В таком случае заливка в цилиндр небольшого количества масла (3 - 5 см3) сразу увеличит не только давление на первом такте, но и компрессию.

С другой стороны, когда на первом такте давление достигает 0,7 - 0,9 МПа, а на последующих тактах почти не растет, вероятнее всего налицо негерметичность клапана или прокладки головки. Разумеется, более точно установить причину можно с помощью других средств диагностики.

Как использовать на практике результаты измерений

Основное правило, которое следует помнить: в большинстве случаев результаты замеров компрессии являются относительными. Это значит, что в первую очередь необходимо опираться на разницу в значениях компрессии у различных цилиндров, а не на саму ее абсолютную величину.

Такой подход позволяет, с одной стороны, быстро локализовать неисправность в конкретном цилиндре. С другой стороны, исключаются ошибки, часто встречающиеся в ремонтной практике при попытке оценить техническое состояние двигателя в целом - слишком много факторов влияет на компрессию, чтобы учесть это влияние на результаты. Тем не менее, на саму величину компрессии иногда тоже можно положиться. Но для этого необходимо, во-первых, знать данные о величине компрессии этого двигателя, полученные на более ранних интервалах его эксплуатации (разумеется, если измерения проводились с полным соблюдением всех правил); и, во-вторых, иметь большую базу статистических данных по компрессии этой модели двигателя на разных этапах его эксплуатации.

Эти данные обязательно должны включать такие условия проведения замеров, как температура масла, частота вращения, температура воздуха, состояние систем автомобиля и др.

Только так можно использовать измеренную величину компрессии для того, чтобы судить об износе деталей поршневой группы.

Чем измеряют компрессию?

Самым распространенным прибором для этих целей является упомянутый выше компрессометр. В отличие от незамысловатых отечественных конструкций иностранные фирмы выпускают целые наборы с комплектом переходников (адаптеров), позволяющих проводить измерения на автомобилях любых марок и моделей.

Удобны в работе и компрессографы. Их назначение то же, но результаты измерений записываются на бумаге или специальных пластиковых карточках, что дает возможность архивировать их для последующего сравнения в разные периоды эксплуатации автомобиля. Недостатком компрессографа является трудность оценки динамики нарастания давления при прокрутке коленвала.

Быстро и эффективно измеряют компрессию современные мотортестеры. Эти приборы фиксируют фактически не давление, а амплитуду пульсации электрического тока, потребляемого стартером во время прокрутки - ведь чем выше давление в цилиндре, тем больше затраты мощности стартера на вращение коленвала. Тем самым удается одновременно измерить компрессию во всех цилиндрах всего за несколько оборотов, не прибегая к выворачиванию свечей, что особенно важно для многоцилиндровых двигателей. Правда, с подобным способом измерения связан и недостаток мотортестера - получаемые результаты выражаются в относительных единицах, например, в процентах к цилиндру, работающему лучше. Лишь самые дорогие мотортестеры способны измерять абсолютную величину компрессии в каждом цилиндре, но это возможно только на основе большого числа статистических данных по конкретной модели двигателя и их сопоставления с действительным давлением в цилиндре.

Набор для измерения давления фирмы ОТС подходит для любых двигателей: слева - компрессометр, справа - вакуумметр

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

В одном из предыдущих номеров (см. «АБС-авто», ноябрь 1998 г.) мы рассказали о назначении мотортестеров и задачах, которые решаются с их помощью на СТО. Тогда мы рассмотрели весь ряд этих приборов — от простых до самых сложных и дорогих.

Один из выводов, который мы сделали, состоял в том, что консольные мотортестеры высшей группы сложности, обладающие способностью не только собирать и обрабатывать информацию о различных системах, но анализировать ее и находить неисправности, могут быть заменены более простыми и дешевыми приборами, если функцию анализа информации берет на себя специалист-диагност.

Однако такой путь поиска и устранения неисправностей требует от человека большого опыта и высокой квалификации, а также наличия на СТО банка информации по тестируемым автомобилям, даже если неисправность не слишком сложна и серьезна. Очевидно, при этом затраты времени могут оказаться большими и заметно ограничат пропускную способность диагностического поста во время технического обслуживания автомобилей различных марок и деталей.

Постановка задачи

Мы решили проверить, насколько же эффективен консольный мотортестер, что он может, как быстро и насколько достоверно способен самостоятельно ставить «диагноз». Для этого мы вновь обратились к нашим постоянным партнерам — специалистам фирмы «Гардиа». Предлагаемое ею на российском рынке оборудование фирмы SUN считается одним из лучших в мире.

Выбранный нами консольный мотортестер SUN SMP 4000 относится к высшей группе сложности. Его функции достаточно многообразны и включают в себя не только сбор информации от датчиков и систем двигателя.

«Изюминкой» мотортестера является автоматическое сравнение результатов тестов (при этом тесты последовательно задаются самим прибором) с эталонными значениями параметров двигателя данной модели, записанными в памяти прибора. При существенном расхождении тестируемого параметра и эталонного мотортестер с помощью экспертной программы выдает список возможных неисправностей в порядке убывания их вероятности, а также причины и способы устранения.

Объектом наших испытаний явилась редакционная Mazda-626 1991 года выпуска с системой впрыска топлива — автомобиль не новый, зато оборудованный системой снижения токсичности выхлопных газов с трехкомпонентным нейтрализатором, антиблокировочной системой тормозов и др. Пробег автомобиля — более 200 тыс. км. Хотя явных дефектов и неисправностей каких-либо систем на нем не наблюдалось, интересно было взглянуть, что, «покопавшись», найдет в нем мотортестер. Кроме того, мы планировали смоделировать некоторые достаточно простые неисправности и проверить, как на них отреагирует прибор, насколько точно установит их причину.

Наш тест мы проводили в уже знакомом диагностическом центре SUN, а также в Московском учебном центре, использующем оборудование указанной марки. Работа началась с идентификации модели автомобиля — в предлагаемом прибором «меню» с помощью клавиатуры выбрали нашу модель автомобиля, и после некоторых уточнений получили подтверждение: да, такая модель «существует», и эталонные параметры всех ее систем записаны в памяти мотортестера. Теперь можно приступать непосредственно к испытаниям. Но сначала к автомобилю необходимо подключить все кабели и шланги прибора.

Небольшое отступление

Мотортестер имеет довольно много кабелей, расположенных на его поворотной консоли (от нее и идет название «консольный»). Если подключить все кабели, то можно замерить следующие параметры: частоту вращения коленвала; напряжение в бортовой сети и ток зарядки аккумулятора; температуру масла; разрежение во впускном коллекторе; относительную компрессию по цилиндрам; баланс мощностей (падение частоты вращения при последовательном отключении цилиндров); состав выхлопных газов, их дымность и коэффициент избытка воздуха; характеристики системы пуска (состояние аккумулятора и стартера); характеристики системы зажигания, включая угол замкнутого состояния контактов, напряжение и силу тока в первичной цепи катушки, напряжение пробоя искрового промежутка свечи и др.; осциллограммы напряжений в различных цепях, сигналов датчиков.

О том, что все кабели и шланги подключены к автомобилю, мотортестер «узнает» с помощью специального теста (он проводится на работающем двигателе), и, если сигнал от соответствующей системы отсутствует, это будет показано на экране монитора. В нашем эксперименте вначале был ошибочно подключен вакуумный шланг прибора: не к впускному коллектору, а к одной из вакуумных трубок, которые идут от клапана системы снижения токсичности и не связаны непосредственно с коллектором. При этом соответствующее табло на мониторе светилось красным до тех пор, пока ошибку не исправили.

Практика

Теперь о самом эксперименте. Мотортестер последовательно задавал нам следующие режимы: прокрутка стартером, холостой ход, повышенная до 1800 об/мин и 3400 об/мин частота вращения, баланс мощности. На каждом режиме выполнялась запись параметров. После их обработки на экране монитора высвечивались результаты — значения измеренных параметров и допустимые пределы эталонных величин. Когда измеренная величина выходит за эти пределы, ее значение высвечивается красным цветом, а около нее появляется стрелка «?», если полученное значение слишком мало, или «ґ», если велико.

После замера на одном режиме прибор анализирует полученные результаты и сразу выдает возможные причины неисправностей и способы их устранения. Эта же информация, но уже по всем режимам, будет отражена в итоговом отчете, который в виде распечатки можно получить по окончании всего цикла тестов.

В целом же мотортестер позволяет достаточно полно оценить состояние, а также определить неисправности и их возможные причины в следующих системах: запуска (стартер, аккумулятор, проводка); электроснабжения (генератор, регулятор напряжения); зажигания (датчик, распределитель, высоковольтные провода, свечи зажигания); подачи топлива и снижения токсичности выхлопных газов; охлаждения.

Все тесты выполняются быстро, на каждый уходит несколько минут. Таким образом, общее время тестирования нашего автомобиля не превысило и получаса.

Остановимся подробнее на тестах прокрутки стартером и баланса мощности цилиндров. В первом случае мотортестер на 15 секунд блокирует систему зажигания, и двигатель заводится только по окончании этого теста. При выполнении теста баланса мощности цилиндров мотортестер автоматически и последовательно на несколько секунд отключает зажигание в отдельных цилиндрах, регистрируя частоту вращения. Очевидно, если отключение какого-либо одного цилиндра мало изменяет частоту вращения по сравнению с другими цилиндрами, то в нем топливо сгорает хуже (о возможных причинах речь пойдет ниже).

Что же удалось обнаружить?

Оказывается, не так уж мало. Итоговый отчет показал, что только системы запуска и охлаждения на нашем автомобиле в норме. Все остальные имеют те или иные проблемы. Суть их в следующем:

— в третьем цилиндре понижена компрессия. Вероятные причины (указаны в итоговом отчете) — дефекты выпускного клапана или поршневых колец. Рекомендации мотортестера — заменить их, а также проверить состояние распределительного вала и коромысел;

— пониженная мощность во м и м цилиндрах. Возможная причина — в неправильном распределении топлива форсунками (не исключено, что они загрязнены, все-таки 200 тысяч км пробега сказываются);

— пониженное напряжение в бортовой сети. Вероятная причина — неисправность регулятора напряжения, который рекомендуется заменить;

— неправильное регулирование угла опережения зажигания. Возможная причина — дефект механизма опережения. Рекомендовано его проверить, причем и центробежный и вакуумный автоматы, а при необходимости заменить.

Как видим, неисправностей обнаружилось немало. В какой-то степени признаки первых двух проблем можно наблюдать на холостом ходу — двигатель слегка «подтрясывает», да и расход масла, хоть и небольшой, но имеется (около 200 см3 на 1000 км пробега). Дефицит напряжения, указанный в м пункте, тоже неудивителен — не так давно генератор меняли, но качество нового сразу вызвало сомнения из-за его внешнего вида (правда, цена была на редкость удачной, что и определило решение о покупке).

По последнему пункту нельзя сказать ничего определенного, надо проверить систему зажигания, в частности, ее механическую часть, как и рекомендовано в итоговой распечатке.

Кстати, получив такой отчет, мы уяснили, что мотортестер не «обмануть» введением простых дефектов вроде неработающей свечи зажигания. Так мы делали при тестировании газоанализатора («АБС-авто», октябрь 1998 г.), но мотортестер подобные «дефекты» распознает сразу. Поэтому тратить время на это не стали.

Закончив тестирование автомобиля мотортестером, подключили к прибору сканер. К сожалению, для нашего автомобиля не удалось считать какие-либо коды неисправностей из памяти бортового компьютера системы управления двигателем. Соответствующий картридж для сканера хотя и был в наличии, предназначался для подключения к автомобилям Mazda американского рынка. Наша европейская модель имеет другую структуру идентификационного номера — но ее не оказалось в памяти сканера (не исключено, что она вообще не поставлялась в Америку). Естественно, сканер не смог связаться с бортовым компьютером нашего автомобиля. Но одно из преимуществ консольного мотортестера мы при этом увидели. Сканер имеет узкий дисплей, на котором вся считываемая им информация не размещается. Если же подключить его к мотортестеру, можно на мониторе посмотреть все сразу. А это и наглядно, и удобно.

Касаясь же вообще преимуществ консольных мотортестеров, нельзя не отметить их эргономичность — удобно оборудованное рабочее место оператора, отличная считываемость информации, символы дисплея окрашиваются в разные цвета (например, значения параметров, не укладывающихся в эталонный диапазон, показываются красным цветом).

Привлекательна и многофункциональность мотортестеров данного типа. Можно использовать целый ряд электронных баз данных (SAIS, Mitchell, All-Data, дилерские программы), вести базу данных по автомобилям клиентов, работать с различными электронными справочниками, каталогами, прикладными программами. Легко делать дополнения к имеющимся программам (так называемый Up-date). Для этого нужно всего несколько минут, причем можно использовать даже электронные каналы связи: E-mail, Internet.

Специалисты фирмы «Гардиа» не без основания утверждают: ремонтопригодность консольных мотортестеров намного выше, чем портативных, а стоимость ремонта — ниже. Их доводы, основанные на многолетнем опыте обслуживания оборудования фирмы SUN, весьма убедительны: модульность построения консольного мотортестера позволяет при необходимости заменять отдельные блоки, а использование стандартной элементной ба-зы — проводить ремонт даже на уровне замены микросхем. Кроме того, консольные приборы имеют, как правило, отличную самодиагностику, что значительно облегчает процедуру поиска неисправности и ее устранение (хотя, надо отметить, неисправность мотортестера высшей группы сложности — дело крайне редкое). И, конечно, нельзя не отметить возможность изменения конфигурации прибора. При этом он может удовлетворить требования не только больших СТО, но и сравнительно малых мастерских. В этом мы смогли убедиться сами.

Зеленый индикатор мотортестера показывает, что подключены все имеющиеся кабели, шланги и датчики.

В тесте на холостом ходу обнаружилось, что система управления двигателем поддерживает слишком бедный состав топливной смеси (концентрация кислорода, показанная красным цветом, слишком велика).

Параметры системы зажигания, включая напряжение на различных элементах, не везде оказались в норме.

На горячем двигателе компрессия в третьем цилиндре составила только 86% от максимальной, но на холодном двигателе проблемы были во втором цилиндре.

На мониторе мотортестера при необходимости можно наблюдать осциллограммы напряжений и сигналов различных датчиков.

На мониторе можно не только продублировать показания сканера, но просмотреть одновременно весь объем получаемой им информации.