ПАВЕЛ ГОРЕЛИК

«Пациент» — автомобиль Renault Clio II. Возраст — 4 года (произведен в 2001 году). Пробег на момент обращения — 10 000 км. Автомобиль поступил в ремонт из N-ского «стационара» с диагнозом «разрушение стержня клапана и выход из строя двигателя вследствие обрыва ремня привода ГРМ».

В ходе первичного осмотра установлено:

— автомобиль оснащен цилиндровым двигателем К4М с рабочим объемом 1,6 л;

— мотор имеет современную конструкцию: легкосплавный блок цилиндров с «сухими» чугунными гильзами, многоклапанный ГРМ с двумя распределительными валами, непосредственно воздействующими на клапаны через цилиндрические толкатели;

Головка блока цилиндров двигателя демонтирована, что позволяет визуально наблюдать необычную картину повреждения, показанную на фотографиях.

Осмотр мотора выявил удивительный факт, который противоречил поставленному ранее диагнозу. Оказалось, что ремень привода ГРМ абсолютно цел, не только не оборван, но и не имеет поврежденных «зубьев». Это дало основания оспорить заключение о причинах, приведших к аварии, и провести повторное обследование «больного».

Было сделано предположение, что к роковой «встрече» поршня с клапаном мог привести обрыв стержня клапана. На такое развитие событии указывало то, что стержень действительно разрушен в месте проточки для фиксации сухарей. Известно, что подобные повреждения клапана в большинстве случаев являются следствием одной из следующих причин:

— очень большого теплового зазора, приводящего к возникновению в процессе работы клапана ударных нагрузок;

— заклинивания клапана в направляющей втулке в результате попадания грязи при сборке после ремонта;

— повреждения проточки клапана в результате «ударной» сборки или разборки клапанного механизма.

В данном случае было выяснено, что двигатель не ремонтировался, да и конструктивная схема привода клапана (детали которого были изучены на предмет наличия следов износа) практически исключает вероятность самопроизвольного резкого увеличения теплового зазора. Поэтому от этой гипотезы пришлось отказаться.

Скорее всего, повреждение стержня — не причина «коллизии», а ее следствие. Интуиция подсказывала, что источник болезни все же кроется в нарушении синхронности работы кривошипно-шатунного и газораспределительного механизмов.

В дальнейшем внимание было сосредоточено на исследовании деталей механизма привода ГРМ. Для доступа к нижней части защитного кожуха зубчатого ремня был демонтирован шкив привода навесных агрегатов двигателя. После этой операции стали очевидными две вещи. Во-первых, ранее шкив не снимался, значит, двигатель действительно ремонту не подвергался. Во-вторых, между защитным кожухом и корпусом двигателя имеется зазор, составляющий ни много ни мало 15 мм. Если первая «находка» внушила оптимизм, вторая, наоборот, навела на безрадостные размышления. А что, если…?

Смутные догадки переросли в уверенность после уточнения картины аварии. По словам владельца, она произошла в зимнее время, в момент пуска холодного двигателя, после ночи, проведенной автомобилем на открытой стоянке. Не нужно обладать богатым воображением, чтобы построить логическую цепочку: снег — теплый двигатель — вода — мороз — лед. И все это в самом уязвимом месте — месте контакта ремня ГРМ с центральной шестерней коленчатого вала. Далее все просто и одновременно коварно: при проворачивании двигателя стартером обледеневший ремень смещается на несколько зубьев и — БАЦ! После буксировки автомобиля в теплое помещение лед тает и в прямом смысле слова «прячет концы в воду».

Что это, единичный дефект сборки или конструктивная недоработка? В результате неофициальных консультаций с автоспециалистами, не один год работающими с автомобилями Renault, было выяснено, что аналогичные случаи отмечались и ранее. Причем среди «пострадавших» были и абсолютно новые автомобили, которые на пути в салоны дилеров коротали холодное время года на открытом воздухе.

После установления истинной причины «недуга» двигателя ему был прописан курс восстановительного лечения, который включал:

— расточку цилиндров в ремонтный размер с соответствующей заменой поршней;

—ремонт головки блока, восстановление геометрии камеры сгорания напылением поврежденных участков с их последующей абразивной обработкой и контролем объема камеры методом пролива;

— ремонт фасок клапанных седел;

— замену поврежденных клапанов.

Стоимость восстановительных процедур с учетом запасных частей составила ни много ни мало 120 000 рублей. Такой оказалась цена беззащитного в условиях российской зимы ремня привода ГРМ.

(публикуется в сокращении)

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

С детонацией сталкивался, пожалуй, каждый водитель. И каждый знает, что это для двигателя плохо. И что появляется она чаще всего из-за низкооктанового бензина и на слух воспринимается стуками («клапанов» и даже «пальцев»). Только вот проблема: оказывается, не все детонацию слышат, а если и слышат, то нередко воспринимают ее как нечто, от них не зависящее, и даже путают ее с другими видами нарушения процесса сгорания.

Интересующий нас процесс начинается в самом конце такта сжатия, когда поршень, сжимая топливовоздушную смесь, приближается к верхней мертвой точке (ВМТ). Искровой разряд на свече зажигания вызывает мгновенный разогрев смеси до температуры более 10000°С в очень малом объеме между электродами свечи. Фактически за очень короткий промежуток времени, примерно равный длительности разряда (около 5с или одной сотой доли микросекунды), в этом объеме происходят нагрев, термическое разложение, ионизация молекул топлива и кислорода и воспламенение смеси. Возникает очаг горения, насыщенный продуктами сгорания, и поверхность раздела между ним и несгоревшей смесью (фронт пламени).

Если объем очага достаточен для прогрева и воспламенения соприкасающихся с ним слоев смеси (это зависит в основном от мощности искрового разряда и температуры смеси в конце такта сжатия), то процесс сгорания начинает распространяться по объему камеры сгорания от свечи в сторону еще не горевшей смеси.

Вначале скорость распространения пламени невелика — менее 1 м/с. Но длится этот период недолго. В процесс вмешиваются турбулентные пульсации, другими словами, вихри, возникающие в цилиндре и камере сгорания при наполнении и сжатии смеси. Вихри искривляют и разрушают четкие границы фронта пламени: объемы горящих компонентов внедряются в негорящую смесь. Площадь поверхности фронта резко возрастает, а вместе с ней повышается и скорость распространения фронта — до 80 м/с.

Ускоряющееся движение фронта вызывает все более быстрое воспламенение и сгорание новых порций смеси. В результате температура и давление в камере сгорания резко увеличиваются. Но как только пламя достигнет стенок камеры сгорания (этот момент примерно совпадает с максимумом давления в 6 МПа), количество смеси, вступающей в реакцию, станет уменьшаться — слишком мало ее осталось, да и отвод тепла от газов к более холодным стенкам камеры сгорания играет здесь не последнюю роль. Догорание последних порций смеси идет медленно, при этом температура продуктов сгорания, достигнув максимума (более 20000°С) несколько позже, чем давление, начинает падать вместе с началом движения поршня вниз. Все, процесс горения, занявший 40° поворота коленчатого вала (ПКВ), закончился. Начинается процесс расширения или, как принято говорить, такт рабочего хода.

Как мы уже отметили, на упрощенно описанный процесс влияет немало факторов. Например, температура стенок камеры. Чем она ниже, тем медленнее идет процесс, особенно на последней стадии - ведь снижение температуры замедляет химические реакции.

Очень важен и состав топливовоздушной смеси, точнее говоря, коэффициент избытка воздуха. Если топлива слишком много («богатая» смесь) или, напротив, мало («бедная» смесь), то «лишние» вещества, не участвующие в реакциях, забирают на себя теплоту и тем самым охлаждают смесь и продукты сгорания.

Среди прочих факторов отметим такие, как давление и температура смеси в начале сжатия, степень сжатия, режим работы двигателя (частота вращения и нагрузка), угол опережения зажигания, мощность искры, конструкция камеры сгорания и ее размеры, количество нагара на стенках и, конечно, октановое число бензина.

Большое число нарушений в работе двигателя, связанных с процессом горения, возникает из-за переобеднения топливовоздушной смеси, когда возникают пропуски воспламенения, вспышки во впускной и выпускной системах.

Двигатель при этом, естественно, не развивает мощности. Правда, пропуски воспламенения возможны и из-за неисправности системы зажигания. Например, когда слишком мала мощность искры или искрообразование носит нерегулярный характер.

Вспышки во впускной системе обычно появляются именно тогда, когда топливовоздушная смесь горит слишком медленно. При этом смесь способна продолжать гореть даже на такте выпуска. А поскольку в любом двигателе существует перекрытие клапанов (период, когда в начале впуска открыты оба клапана), продукты сгорания получают возможность поджечь свежую смесь, начавшую поступать в цилиндр. Тогда быстрое распространение пламени из цилиндра во впускные каналы создает характерный «хлопок» — своеобразный взрыв на впуске.

Кстати, при слишком «позднем» зажигании, нередко являющемся причиной подобных «хлопков», мощность двигателя заметно падает. Почему это происходит, видно по индикаторной диаграмме: при позднем зажигании пик давления в цилиндре резко уменьшается и сдвигается в сторону фазы выпуска.

Еще более сильный взрыв возможен на выпуске — в глушителе. При пропусках воспламенения в отдельных цилиндрах там может скапливаться горючая смесь, которая способна воспламеняться с характерным «выстрелом», к примеру, при резком открытии дроссельной заслонки.

Описанные отклонения от нормального протекания процесса горения для механической части двигателя никакой опасности не представляют. Однако хлопки во впускной системе способны вывести из строя расположенные там датчики, разорвать воздушный фильтр, а то и вызвать пожар под капотом.

Совсем другое дело, если при работе двигателя возникает преждевременное самовоспламенение смеси (калильное зажигание). Очевидно, преждевременное это значит — до момента искрообразования на свече зажигания. Такое возможно, если какие-либо поверхности или элементы камеры сгорания нагреты до слишком высокой температуры (700°С и более).

Калильное зажигание, в отличие от нормального, возникает сразу на большой поверхности — к тому же раньше, чем искровой разряд на свече. Поэтому данный процесс, хотя и похож по своей физической сущности на нормальное горение, не только начинается раньше, но и идет быстрее. А значит, возрастает максимальное давление в цилиндре при горении.

Все это вызывает рост нагрузок на детали шатунно-поршневой группы, увеличение шумности работы двигателя, в том числе стуки глухого тона, которые довольно сложно выделить из ряда звуков мотора. Но главное — калильное зажигание приводит к значительному росту тепловых нагрузок на поверхности, образующие камеру сгорания. Особенно страдают алюминиевые детали: днище поршня, поверхность головки блока около выпускного клапана. Ну и, конечно, свечи зажигания, которые быстро выходят из строя из-за оплавления электродов.

Коварство калильного зажигания состоит в том, что его появление почти не слышно. Из-за этого водитель может заметить неладное только тогда, когда, например, поршень уже прогорел, и ремонт двигателя неминуем. Для борьбы с этим явлением наиболее действенны профилактические меры.

Иногда калильным зажиганием называют и самопроизвольную работу двигателя после выключения зажигания. Обычно это происходит, если в двигатель продолжает поступать топливо (подобное случается обычно при наличии карбюратора). Но этот режим скорее неприятен, чем опасен — нет нагрузки на двигатель, а топлива слишком мало, чтобы сжечь поршни. Бороться с таким самовоспламенением нетрудно — обычно бывает достаточно заменить электромагнитный клапан в карбюраторе, свечи зажигания и отрегулировать все, что требуется по инструкции, включая зазоры в приводе клапанов.

В целом же все описанные отклонения в протекании процесса горения объединены тем, что физическая картина процесса почти не меняется: горение начинается от сильно нагретого источника или поверхности, а далее с большей или меньшей скоростью распространяется в виде фронта пламени по всему объему камеры сгорания, замедляясь и угасая у стенок.

Совершенно другая картина наблюдается при детонации — одном из самых загадочных явлений в двигателях внутреннего сгорания, над которым бьется не одно поколение ученых и конструкторов.

- продукты сгорания;
- несгоревшая топливовоздушная смесь;
uН, uТ - скорость распространения пламени;
ТСМ, ТПС - температура топливовоздушной смеси и продуктов сгорания;
СТ - концентрация топлива.
Фронт пламени вначале имеет довольно простую форму (а), но быстро искривляется, а его четкие границы разрушаются (б).

Зависимость давления и температуры в цилиндре от угла поворота коленчатого вала (индикаторная диаграмма):
1 - момент зажигания;
I - образование начального очага пламени;
II - фаза быстрого сгорания;
III - фаза догорания;
Q - угол опережения зажигания.

«Позднее» зажигание заметно уменьшает максимум давления в цилиндре и сдвигает его в сторону выпуска:
- нормальное опережение зажигания (Q1);
- «позднее» зажигание (Q2).

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Сами по себе дефекты в механической части двигателя, как известно, не появляются. Практика показывает: всегда есть причины повреждения и выхода из строя тех или иных деталей. Разобраться в них непросто, особенно, когда повреждены составляющие поршневой группы.

Поршневая группа — традиционный источник неприятностей, подстерегающих водителя, эксплуатирующего автомобиль, и механика, его ремонтирующего. Перегрев двигателя, небрежность в ремонте, — и пожалуйста, — повышенный расход масла, сизый дым, стук.

При «вскрытии» такого мотора неминуемо обнаруживаются задиры на поршнях, кольцах и цилиндрах. Вывод неутешителен — требуется дорогостоящий ремонт. И возникает вопрос: чем провинился двигатель, что его довели до такого состояния?

Двигатель, конечно, не виноват. Просто необходимо предвидеть, к чему приводят те или иные вмешательства в его работу. Ведь поршневая группа современного двигателя — «материя тонкая» во всех смыслах. Сочетание минимальных размеров деталей с микронными допусками и громадными силами давления газов, и инерции, действующими на них, способствует появлению и развитию дефектов, приводящих в конечном счете к выходу двигателя из строя.

Во многих случаях простая замена поврежденных деталей — не лучшая технология ремонта двигателя. Причина-то появления дефекта осталась, а раз так, то его повторение неминуемо.

Чтобы этого не случилось, грамотному мотористу, как гроссмейстеру, необходимо думать на несколько ходов вперед, просчитывая возможные последствия своих действий. Но и этого недостаточно — необходимо выяснить, почему возник дефект. А здесь без знания конструкции, условий работы деталей и процессов, происходящих в двигателе, как говорится, делать нечего. Поэтому, прежде чем анализировать причины конкретных дефектов и поломок, неплохо было бы знать...

Как работает поршень?

Поршень современного двигателя — деталь на первый взгляд простая, но крайне ответственная и одновременно сложная. В его конструкции воплощен опыт многих поколений разработчиков.

И в какой-то степени поршень формирует облик всего двигателя. В одной из прошлых публикаций мы даже высказали такую мысль, перефразировав известный афоризм: «Покажи мне поршень, и я скажу, что у тебя за двигатель».

Итак, с помощью поршня в двигателе решается несколько задач. Первая и главная — воспринять давление газов в цилиндре и передать возникшую силу давления через поршневой палец шатуну. Далее эта сила будет преобразована коленвалом в крутящий момент двигателя.

Решить задачу преобразования давления газов во вращательный момент невозможно без надежного уплотнения движущегося поршня в цилиндре. Иначе неминуем прорыв газов в картер двигателя и попадание масла из картера в камеру сгорания.

Для этого на поршне организован уплотнительный пояс с канавками, в которые установлены компрессионные и маслосъемные кольца специального профиля. Кроме того, для сброса масла в поршне выполнены особые отверстия.

Но этого мало. В процессе работы днище поршня (огневой пояс), непосредственно контактируя с горячими газами, нагревается, и это тепло надо отводить. В большинстве двигателей задача охлаждения решается с помощью тех же поршневых колец - через них тепло передается от днища стенке цилиндра и далее — охлаждающей жидкости. Однако в некоторых наиболее нагруженных конструкциях делают дополнительное масляное охлаждение поршней, подавая масло снизу на днище с помощью специальных форсунок. Иногда применяют и внутреннее охлаждение — форсунка подает масло во внутреннюю кольцевую полость поршня.

Для надежного уплотнения полостей от проникновения газов и масла поршень должен удерживаться в цилиндре так, чтобы его вертикальная ось совпадала с осью цилиндра. Разного рода перекосы и «перекладки», вызывающие «болтание» поршня в цилиндре, негативно сказываются на уплотняющих и теплопередающих свойствах колец, увеличивают шумность работы двигателя.

Удерживать поршень в таком положении призван направляющий пояс — юбка поршня. Требования к юбке весьма противоречивы, а именно: необходимо обеспечить минимальный, но гарантированный, зазор между поршнем и цилиндром как в холодном, так и в полностью прогретом двигателе.

Задача конструирования юбки усложняется тем, что температурные коэффициенты расширения материалов цилиндра и поршня различны. Мало того, что они изготовлены из различных металлов, их температуры нагрева разнятся во много раз.

Чтобы нагретый поршень не заклинило, в современных двигателях принимают меры по компенсации его температурных расширений.

Во-первых, в поперечном сечении юбке поршня придается форма эллипса, большая ось которого перпендикулярна оси пальца, а в продольном — конуса, сужающегося к днищу поршня. Такая форма позволяет обеспечить соответствие юбки нагретого поршня стенке цилиндра, препятствуя заклиниванию.

Во-вторых, в ряде случаев в юбку поршня заливают стальные пластины. При нагревании они расширяются медленнее и ограничивают расширение всей юбки.

Использование легких алюминиевых сплавов для изготовления поршней — не прихоть конструкторов. На высоких частотах вращения, характерных для современных двигателей, очень важно обеспечить низкую массу движущихся деталей. В подобных условиях тяжелому поршню потребуется мощный шатун, «могучий» коленвал и слишком тяжелый блок с толстыми стенками. Поэтому альтернативы алюминию пока нет, и приходится идти на всяческие ухищрения с формой поршня.

В конструкции поршня могут быть и другие «хитрости». Одна из них — обратный конус в нижней части юбки, призванный уменьшить шум из-за "перекладки" поршня в мертвых точках. Улучшить смазку юбки помогает специальный микропрофиль на рабочей поверхности — микроканавки с шагом 0,0,5 мм, а уменьшить трение — специальное антифрикционное покрытие. Профиль уплотнительного и огневого поясов тоже определенный — здесь самая высокая температура, и зазор между поршнем и цилиндром в этом месте не должен быть ни большим (возрастает вероятность прорыва газов, опасность перегрева и поломки колец), ни маленьким (велика опасность заклинивания). Нередко стойкость огневого пояса повышается анодированием.

Все, что мы рассказали, — далеко не полный перечень требований к поршню. Надежность его работы зависит и от сопряженных с ним деталей: поршневых колец (размеры, форма, материал, упругость, покрытие), поршневого пальца (зазор в отверстии поршня, способ фиксации), состояния поверхности цилиндра (отклонения от цилиндричности, микропрофиль). Но уже становится ясно, что любое, даже не слишком значительное, отклонение в условиях работы поршневой группы быстро приводит к появлению дефектов, поломкам и выходу двигателя из строя. Чтобы в дальнейшем качественно отремонтировать двигатель, необходимо не только знать, как устроен и работает поршень, но и уметь по характеру повреждения деталей определить, почему, к примеру, возник задир или...

Почему прогорел поршень?

Анализ различных повреждений поршней показывает, что все причины дефектов и поломок делятся на четыре группы: нарушение охлаждения, недостаток смазки, чрезмерно высокое термосиловое воздействие со стороны газов в камере сгорания и механические проблемы.

Вместе с тем многие причины возникновения дефектов поршней взаимосвязаны, как и функции, выполняемые его различными элементами. Например, дефекты уплотняющего пояса вызывают перегрев поршня, повреждения огневого и направляющего поясов, а задир на направляющем поясе ведет к нарушению уплотнительных и теплопередающих свойств поршневых колец.

В конечном счете это может спровоцировать прогар огневого пояса.

Отметим также, что практически при всех неисправностях поршневой группы возникает повышенный расход масла. При серьезных повреждениях наблюдаются густой, сизый дым выхлопа, падение мощности и затрудненный запуск из-за низкой компрессии. В некоторых случаях прослушивается стук поврежденного поршня, особенно на непрогретом двигателе (о стуке поршня более подробно см. №№ 8,9/2000).

Иногда характер дефекта поршневой группы удается определить и без разборки двигателя по указанным выше внешним признакам. Но чаще всего такая «безразборная» диагностика неточна, поскольку разные причины нередко дают практически один и тот же результат. Поэтому возможные причины дефектов требуют детального анализа.

Нарушение охлаждения поршня — едва ли не самая распространенная причина появления дефектов. Обычно это происходит при неисправности системы охлаждения двигателя (цепочка: «радиатор — вентилятор — датчик включения вентилятора — водяной насос») либо из-за повреждения прокладки головки блока цилиндров. Во всяком случае, как только стенка цилиндра перестает омываться снаружи жидкостью, ее температура, а вместе с ней и температура поршня, начинают расти. Поршень расширяется быстрее цилиндра, к тому же неравномерно, и в конечном итоге зазор в отдельных местах юбки (как правило, вблизи отверстия под палец) становится равным нулю. Начинается задир — схватывание и взаимный перенос материалов поршня и зеркала цилиндра, а при дальнейшей работе двигателя происходит заклинивание поршня.

После остывания форма поршня редко приходит в норму: юбка оказывается деформированной, т.е. сжатой по большой оси эллипса. Дальнейшая работа такого поршня сопровождается стуком и повышенным расходом масла.

В некоторых случаях задир на поршне распространяется на уплотнительный пояс, завальцовывая кольца в канавки поршня. Тогда цилиндр, как правило, выключается из работы (слишком мала компрессия), а говорить о расходе масла вообще трудно, поскольку оно будет просто вылетать из выхлопной трубы.

Недостаточная смазка поршня чаще всего характерна для пусковых режимов, особенно при низких температурах. В подобных условиях топливо, поступающее в цилиндр, смывает масло со стенок цилиндра, и возникают задиры, которые располагаются, как правило, в средней части юбки, на ее нагруженной стороне.

Двухсторонний задир юбки обычно встречается при длительной работе в режиме масляного голодания, связанного с неисправностями системы смазки двигателя, когда количество масла, попадающего на стенки цилиндров, резко уменьшается.

Недостаток смазки поршневого пальца — причина его заклинивания в отверстиях бобышек поршня. Такое явление характерно только для конструкций с пальцем, запрессованным в верхнюю головку шатуна. Этому способствует малый зазор в соединении пальца с поршнем, поэтому «прихваты» пальцев чаще наблюдаются у относительно новых двигателей.

Чрезмерно высокое термосиловое воздействие на поршень со стороны горячих газов в камере сгорания — частая причина дефектов и поломок. Так, детонация приводит к разрушению перемычек между кольцами, а калильное зажигание — к прогарам (более подробно см. №№ 4, 5/2000).

У дизелей чрезмерно большой угол опережения впрыска топлива вызывает очень быстрое нарастание давления в цилиндрах («жесткость» работы), что также может вызвать поломку перемычек. Такой же результат возможен и при использовании различных жидкостей, облегчающих запуск дизеля.

Днище и огневой пояс могут повреждаться при слишком высокой температуре в камере сгорания дизеля, вызванной неисправностью распылителей форсунок. Аналогичная картина возникает и при нарушении охлаждения поршня — например, при закоксовывании форсунок, подающих масло к поршню, имеющему кольцевую полость внутреннего охлаждения. Задир, возникающий на верхней части поршня, может распространяться и на юбку, захватывая поршневые кольца.

Механические проблемы, пожалуй, дают самое большое разнообразие дефектов поршневой группы и их причин. Например, абразивный износ деталей возможен как «сверху», из-за попадания пыли через рваный воздушный фильтр, так и «снизу», при циркуляции абразивных частиц в масле. В первом случае наиболее изношенными оказываются цилиндры в верхней их части и компрессионные поршневые кольца, а во втором — маслосъемные кольца и юбка поршня. Кстати, абразивные частицы в масле могут появиться не столько от несвоевременного обслуживания двигателя, сколько в результате быстрого износа каких-либо деталей (например, распредвала, толкателей и др.).

Редко, но встречается эрозия поршня у отверстия «плавающего» пальца при выскакивании стопорного кольца. Наиболее вероятные причины этого явления — непараллельность нижней и верхней головок шатуна, приводящая к значительным осевым нагрузкам на палец и «выбиванию» стопорного кольца из канавки, а также использование при ремонте старых (потерявших упругость) стопорных колец. Цилиндр в таких случаях оказывается поврежденным пальцем настолько, что уже не подлежит ремонту традиционными методами (расточка и хонингование).

Иногда в цилиндр могут попадать посторонние предметы. Такое чаще всего происходит при неаккуратной работе во время обслуживания или ремонта двигателя. Гайка или болт, оказавшись между поршнем и головкой блока, способны на многое, в том числе и просто «провалить» днище поршня.

Рассказ о дефектах и поломках поршней можно продолжать очень долго. Но и того, что уже сказано, достаточно, чтобы сделать некоторые выводы. По крайней мере, уже можно определить...

Как избежать прогара?

Правила очень просты и вытекают из особенностей работы поршневой группы и причин появления дефектов. Тем не менее, многие водители и механики забывают о них, что называется, со всеми вытекающими последствиями.

Хотя это и очевидно, но при эксплуатации все-таки необходимо: содержать в исправности системы питания, смазки и охлаждения двигателя, вовремя их обслуживать, излишне не нагружать холодный двигатель, избегать применения некачественного топлива, масла и несоответствующих фильтров и свечей зажигания. А если что-то с двигателем не так, не доводить его «до ручки», когда ремонт уже не обойдется «малой кровью».

При ремонте необходимо добавить и неукоснительно выполнять еще несколько правил. Главное, на наш взгляд, — нельзя стремиться к обеспечению минимальных зазоров поршней в цилиндрах и в замках колец. Эпидемия «болезни малых зазоров», когда-то поразившая многих механиков, все еще не прошла. Более того, практика показала, что попытки «поплотнее» установить поршень в цилиндре в надежде на уменьшение шума двигателя и увеличение его ресурса почти всегда заканчиваются обратным: задирами поршней, стуками, расходом масла и повторным ремонтом. Правило «лучше зазор на 0,03 мм больше, чем на 0,01 мм меньше» работает всегда и для любых двигателей.

Остальные правила традиционны: качественные запасные части, правильная обработка изношенных деталей, тщательная мойка и аккуратная сборка с обязательным контролем на всех этапах.

Задиры на юбке могут образоваться в результате недостаточного зазора или перегрева. В последнем случае они располагаются ближе к отверстию пальца.

Недостаточная смазка явилась причиной одностороннего задира юбки (а). При дальнейшей работе в таком режиме задир распространяется на обе стороны юбки (б).

Схватывание пальца в отверстии бобышек поршня произошло сразу после запуска двигателя. Причина — малый зазор в соединении и недостаточная смазка.

Залегание колец в канавках и задиры в результате слишком высокой температуры в камере сгорания (а). При недостаточном охлаждении днища задир распространяется на всю верхнюю часть поршня (б)

Плохая фильтрация масла послужила причиной абразивного износа юбки, цилиндров и поршневых колец.

Плохая фильтрация масла послужила причиной абразивного износа юбки, цилиндров и поршневых колец.

Деформированный шатун обычно приводит к несимметричному пятну контакта юбки с цилиндром из-за перекоса поршня.

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Дефекты и поломки деталей двигателя создают для владельца автомобиля большие неприятности и выливаются в кругленькую сумму на ремонт. Но и сервисной станции капитальный ремонт двигателей способен принести немало хлопот. И дело не только в сложности конструкции некоторых двигателей и трудоемкости выполнения ремонтных работ. Просто ошибки обходятся дорого, а устранять неисправности по гарантии, если что-то случится с двигателем после ремонта, СТО придется за свой счет. Подобные происшествия иногда случаются, и нередко их причиной являются дефекты подшипников двигателя.

Подшипники в двигателе способны без каких-либо повреждений надежно работать многие сотни тысяч километров. Однако даже небольшое отклонение от нормальных условий работы рано или поздно приводит к выходу подшипников и, соответственно, всего двигателя из строя. Прежде чем разбираться, почему это происходит, надо выяснить...

Что такое подшипник?

Первое, что отметим, — речь идет о подшипнике скольжения, состоящем из вкладышей, установленных в отверстии корпуса — постели. Работа подшипника скольжения основана на эффекте «масляного клина»: вращаясь, вал под действием нагрузки смещается относительно оси подшипника, что вызывает «затягивание» масла в сужающий зазор между валом и вкладышами. Вследствие этого вал «упирается» в масляный клин и при нормальной работе подшипника не касается вкладышей. Чем больше давление и вязкость масла в зазоре, тем большую нагрузку может выдерживать подшипник до соприкосновения поверхностей.

Давление масла в сужающейся части зазора во много раз больше, чем давление подачи, и может достигать 900 кг/см2. Тем не менее, давление подачи — тоже важный параметр: от него зависит количество масла, прокачиваемого через подшипник, и, соответственно, условия его охлаждения.

Нарушения в системе смазки, вызывающие снижение давления, приводят к разрушению масляной пленки, разделяющей детали. В подобных случаях возникают режимы полужидкостного и даже сухого трения, сопровождающиеся перегревом и повреждением поверхностей подшипника.

Вал и отверстие, образуемое вкладышами, должны иметь правильную геометрическую форму, при которой между ними обеспечивается определенный зазор (обычно 0,0,08 мм), а также гладкую поверхность. Увеличение зазора влечет за собой падение давления в системе смазки и ухудшение охлаждения подшипника. Еще хуже уменьшение зазора — оно вызывает соприкосновение и задир поверхностей.

Грубая обработка поверхностей вала и отверстия приводит к соприкосновению их отдельных участков даже при сравнительно небольших нагрузках, что вызывает нагрев элементов подшипника. Это грозит задиром — схватыванием материалов и их взаимным переносом, — после чего подшипник выходит из строя.

Один из важнейших факторов, определяющих работоспособность подшипника, — это материалы, из которых изготовлены его элементы. Наилучшее сочетание материалов следующее: «твердая» поверхность вала и «мягкая» — отверстия. Такое сочетание материалов снижает риск возникновения задиров, если вдруг возникнет контакт поверхностей (подобное возможно при запуске двигателя, когда масло еще не успевает поступить к подшипникам). Однако, несмотря на «мягкость», поверхность отверстия должна быть достаточно прочной, иначе возникающие нагрузки приведут к его разрушению.

Последние требования определяют конструкцию подшипника. Например, для коленчатого вала, где нагрузки и скорости вращения максимальны, обеспечить работоспособность подшипников удается только с помощью вкладышей, позволяющих добиться «мягкой» поверхности и низкого коэффициента трения при высокой усталостной прочности. Достигается это использованием многослойных вкладышей, где, к примеру, основной антифрикционный материал (бронза) через никелевый подслой покрыт тонким слоем мягкого баббитового сплава. А чтобы вкладыши длительное время могли держаться в постели с натягом (это необходимо для обеспечения правильной геометрии и отвода тепла), этот «бутерброд» наносят на прочную основу — стальную ленту. Широко известные у нас сталеалюминиевые вкладыши выполнены по тому же принципу: сплав алюминия с оловом одновременно обладает и «мягкостью», и прочностью, и хорошими антифрикционными свойствами.

И, наконец, работа подшипников во многом определяется свойствами моторного масла — вязкостью, температурной стабильностью, пакетом присадок (см. № 11/1999). Однако в эксплуатации приходится учитывать не только эти параметры: масло может оказаться загрязненным твердыми частицами из-за плохой фильтрации. В таких ситуациях неизбежен абразивный износ рабочих поверхностей, увеличение зазора и в конечном счете — повреждение подшипника.

Заметим, что увеличение зазора в подшипнике свыше критической величины, составляющей в среднем 0,0,15 мм, вызывает стук (№№ 8,9/2000). Он обычно проявляется на повышенных частотах вращения и под нагрузкой, усиливаясь при прогреве двигателя, когда падает вязкость масла. Дальнейшая эксплуатация двигателя с таким подшипником приводит к лавинообразному росту зазора за счет ударных нагрузок, сопровождаемых сильным нагревом, плавлением материала вкладыша и износом шейки вала. Последние, заключительные стадии этого процесса — проворачивание вкладышей и «выбрасывание» их остатков в поддон картера с неизбежным повреждением поверхности постели.

Из нашего анализа следует, что сам по себе подшипник из строя выходит крайне редко. Если такое случилось, то простой заменой вкладышей никак не обойтись — не поможет. Поэтому важно найти и устранить причину, вызывающую неисправность. Для этого почти наверняка придется снимать и разбирать двигатель. И внимательно просматривать все его детали, в первую очередь — вкладыши. Только так удается установить,...

Почему застучал вкладыш?

Несмотря на многообразие причин выхода подшипников из строя, их можно разбить на две группы. Первая связана с нарушением правил эксплуатации — здесь ответственность лежит целиком на водителе автомобиля. А вот вторая группа — это явные ошибки механиков, ремонтировавших двигатель. Причем сказать, какая из групп более многочисленна, трудно. Впрочем, судите сами.

Абразивный износ — весьма распространенная причина повреждения вкладышей. Абразивные частицы вызывают ускоренный износ, если долго не менять масло и масляный фильтр. Тогда фильтрующий элемент будет в один прекрасный день загрязнен настолько, что большая часть масла начнет поступать в двигатель через открытый перепускной клапан без очистки.

Процесс абразивного изнашивания резко ускоряется, если в двигателе установлены быстроизнашиваемые элементы (распредвал, толкатели клапанов и так далее) низкого качества. Стружка, попадая в масло во все возрастающих количествах, засоряет масляный фильтр всего за несколько сотен километров пробега.

И все же главная причина абразивного износа — некачественная сборка отремонтированного двигателя. Если детали не мыть перед сборкой, то вкладыши прослужат намного меньше положенного срока.

Абразивные частицы легко обнаружить — они внедряются в мягкий рабочий слой вкладышей в виде «блесток», царапают поверхности вкладыша и вала — особенно вблизи смазочных отверстий. В результате некачественной сборки вкладыши уже через несколько часов работы будут иметь такой «бледный» вид, какого не встретишь и после тысячи часов нормальной эксплуатации.

Коррозия рабочего слоя вкладыша — следствие длительной эксплуатации двигателя с многослойными вкладышами на «состарившемся» масле. Оно способно химически воздействовать на материал вкладышей, окисляя и разрушая рабочую поверхность. Коррозия «проедает» верхний слой, затем никелевый подслой и добирается до основного антифрикционного слоя, оставляя на поверхности многочисленные поры.

На практике этот вид повреждения является результатом так называемой фреттинг-коррозии (коррозии под напряжением), возникающей при больших нагрузках в подшипниках. Такая картина больше характерна для дизелей, причем не только из-за нерегулярной замены масла, но и при использовании несоответствующих сортов масел.

Выкрашивание и разрушение рабочего слоя — типичный пример последствий некачественного ремонта. Оно проявляется в виде местного отслоения материала от основы.

Выкрашивание обычно возникает в двух случаях:

- во-первых, если применяются вкладыши, не соответствующие по нагрузке и частоте вращения. Это ведет к усталостному выкрашиванию рабочего слоя, что обычно наблюдается у верхнего шатунного вкладыша. Подобная ситуация возможна при установке на дизель вкладышей от бензинового мотора или при использовании на дизеле с непосредственным впрыском и наддувом вкладышей, предназначенных для атмосферного вихрекамерного дизеля;

- во-вторых, если между вкладышем и постелью попадает твердая частица, тогда разрушение вкладыша произойдет из-за очень больших локальных нагрузок. Выкрашиванию предшествует местное разрушение смазочной пленки и местный перегрев вкладыша. Последнее обстоятельство является ключевым для поиска причины — на тыльной стороне вкладыша отпечатается черное пятно перегрева.

Недостаток смазки — едва ли не самая распространенная причина разрушения вкладышей. И начинается оно с разрушения масляной пленки. Причин для этого более чем достаточно.

Самая простая и часто встречающаяся — нарушение подачи масла. Если масло вытекло из пробитого поддона, срезаны шлицы привода маслонасоса или забит маслоприемник, результат будет один — разрушение масляной пленки, контактирование поверхностей, рост температуры и плавление материала вкладышей. К аналогичному результату приводит также недостаточный зазор в подшипнике, несоосность и неправильная форма постели — все это вызывает резкий рост нагрузок и «выжимание» масла из зазора между вкладышем и шейкой вала. Подобный эффект наблюдается и при разжижении масла топливом или охлаждающей жидкостью, а также при запуске на сильном морозе двигателя, заправленного густым летним маслом.

Вкладыши, испытавшие режим масляного голодания, на ранней стадии имеют блестящие подплавленные участки. Дальнейшая работа подшипника в таком режиме ведет к быстрому расширению поврежденных участков, износу, задирам, плавлению и полному разрушению рабочего слоя.

Перегрев вкладышей обычно сопутствует масляному голоданию. Однако он может возникать и при обильной смазке. Например, при деформации постели, когда вкладыши не имеют хорошего натяга и теплового контакта с опорами блока или шатуном. Такой же результат дает недостаточная затяжка болтов крышки подшипника или попадание частиц грязи между плоскостями разъема крышки.

При перегреве вкладышей, помимо блестящих подплавленных участков, выкрашивания и растрескивания рабочего слоя, потемнения тыльной стороны вкладышей, будет наблюдаться деформация стальной основы вкладышей. В данном случае вкладыш, установленный в постель, не удерживается в ней и выпадает.

Износ у края вкладыша возникает по разным причинам. Так, при перекосе осей постели и вала наблюдается диагональный износ краев. Такая картина часто проявляется у шатуна с деформированным стержнем.

Износ краев вкладышей нередко возникает из-за слишком больших галтелей, выполненных на шейках коленчатого вала при его ремонте. Такой износ возможен как с одной, так и с обеих сторон вкладышей в зависимости от формы галтелей.

Перекос осей ведет к подплавлению краев вкладышей, в то время как галтели обычно прочерчивают на краях вкладышей риски, снимая «лишний» металл.

Повреждение вкладышей крупными частицами наблюдается в основном при установке валов, восстановленных различными методами наварки и наплавки. В отдельных случаях происходит отслоение нанесенного на вал металла, а его частицы, отрываясь от шейки, повреждают вкладыши, оставляя на них характерные V-образные следы. Поскольку восстановление валов используется редко, то данный вид дефектов на практике почти не встречается.

Рассматривая причины повреждения и выхода вкладышей из строя, можно без труда составить перечень мероприятий, помогающих если не исключить, то до минимума уменьшить вероятность поломок. Во всяком случае, профилактика получится намного проще и выгоднее, чем ремонт. Итак, осталось разобраться,...

Как избежать ремонта?

Первое, что отметим, — правила профилактики очевидны, но почему-то многие о них забывают (наверное, надеются на пресловутое «авось»?).

В эксплуатации залог безотказной работы подшипников — исправность системы смазки двигателя. Это означает, что надо применять масло высокого качества, своевременно контролировать его уровень и вовремя менять его вместе с масляным фильтром. А любую неисправность в работе двигателя следует устранять немедленно, не откладывая на «потом».

Комплекс «ремонтных» правил более объемный. Главное — это чистота всех деталей, их внимательный контроль, причем как визуальный, так и с помощью измерительных приборов. Особое внимание следует обращать на геометрию постелей вкладышей, перекосы или непараллельность осей постелей и шеек.

Безусловно, ремонт или восстановление отдельных деталей (блока цилиндров, коленвала, шатунов) должны выполняться качественно. Это необходимо проверять, проводя соответствующие измерения. При сборке должны использоваться только качественные комплектующие, соответствующие именно этому двигателю. И, конечно, нельзя забывать о «золотом правиле» моториста — лучше зазор на 0,03 мм больше, чем на 0,01 мм меньше. Только тогда можно быть уверенным, что вкладыш не подведет — не износится, не расплавится и не застучит.

Абразивный износ вкладышей легко установить по матовой рабочей поверхности, рискам и стиранию верхнего слоя.

Отслаивание и отрыв твердой частицы от наплавленного на шейку слоя металла приводит к появлению на вкладыше характерных V-образных отметин.

Коррозия вкладыша характеризуется изменением цвета и раковинами до основного антифрикционного материала.

Недостаток смазки сразу вызывает контакт вала с вкладышами и появлению блестящих подплавленных участков на вкладышах.

Перегрев вкладышей произошел из-за неправильной геометрии постели. На рабочей поверхности видны следы плавления, задиров и выкрашивания (а). На тыльной стороне вкладышей - характерное почернение и цвета побежалости (б).

Износ у края вкладышей возможен по двум причинам: шейки коленвала после ремонта имеют слишком большие галтели (а), перекошены оси вала и постели (б).

При сборке между вкладышем и постелью "впечатался" инородный предмет (а). Искривление рабочей поверхности вкладыша привело к ее выкрашиванию (б).

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Хорошо, когда машина новая - двигатель работает тихо, его не слышно даже на разгоне с полным «газом». Но идет время - и однажды вы замечаете, что от былой «тишины» не осталось и следа, а, открыв капот, видите некоего грохочущего зверя, который вместо привычного пения издает явно оскорбляющие слух звуки.

Шумность работы двигателя чаще всего связана с газораспределительным механизмом - большие зазоры и стук всегда соседствуют друг с другом. Первое, что приходит в голову - отрегулировать зазоры в приводе клапанов. Часто это помогает, но иногда после регулировки кажется, что стук стал даже сильнее: один или несколько клапанов продолжают стучать. И совершенно непонятно почему: ведь зазоры в норме, да и распределительный вал с виду хороший. Причина, похоже, не лежит на поверхности, она где-то внутри, но где? Надо бы разобраться, да некогда. А стук становится все громче.

То, что клапан - деталь ответственная, никому объяснять не надо. И то, что неисправности клапанов - штука не только серьезная, но и опасная, многим известно не понаслышке. Возникают подобные неисправности по разным причинам.

И встречаются среди них совершенно неочевидные, так что при ремонте не удается ограничиться только заменой неисправной детали.

Кстати, в любом случае перед тем, как что-либо ремонтировать или менять, полезно найти причину конкретной неисправности. Иначе та же участь в скором будущем может постигнуть и совсем новую, только что установленную деталь. А чтобы этого не случилось, желательно знать, в каких условиях она работает.

Как работает клапан

Основная задача клапанов - управление потоками топливовоздушной смеси и продуктов сгорания, поступающих в цилиндр или вытекающих из него. Следовательно, клапан при его открытии должен свободно пропускать смесь или газы, то есть обладать минимальным гидравлическим сопротивлением. В то же время закрытый клапан должен обеспечивать герметичность и полностью отделять полость цилиндра от впускной или выпускной системы двигателя.

Kлапаны работают в условиях сильного нагрева от горячих газов, обтекающих их тарелки. И если впускной клапан при открывании периодически охлаждается поступающей в цилиндр топливовоздушной смесью, то выпускной работает в гораздо более жестких условиях. Открываясь на такте выпуска, он еще больше нагревается горячими выхлопными газами, и температура его тарелки достигает 900°С.

Для того чтобы клапаны могли противостоять таким тепловым нагрузкам, их приходится изготавливать из специальных жаростойких сталей и сплавов с большим содержанием хрома, никеля, молибдена и даже вольфрама.

Эти материалы весьма недешевы, из-за чего нередко выпускные клапаны изготавливают из разнородных материалов: тарелку - из жаростойкого сплава, а стержень - из легированной стали. Кстати, впускные и выпускные клапаны самых разных моторов очень легко отличить: тарелки выпускных клапанов не обладают магнитными свойствами.

Чтобы снизить износ фаски при высоких рабочих температурах, на нее нередко наплавляют специальный твердый материал - стеллит. Реже применяют натриевое охлаждение клапана: натрий, перемещающийся во внутренней полости клапана при его открытии и закрытии, переносит тепло от горячей тарелки к более холодному стержню.

Практика тем не менее показывает, что даже самый жаростойкий клапан все равно прогорит, если не будут выполнены и некоторые другие условия, главное из которых - плотная посадка тарелки в седле. Дело в том, что только хороший контакт клапана с седлом позволяет надежно отвести тепло от нагретой тарелки. Ведь седло довольно холодное, оно запрессовано в тело головки блока, охлаждаемой жидкостью.

Через седло отводится до 75% всего тепла, поступающего к тарелке, - весьма и весьма значительная часть. Естественно, если контакт с седлом нарушен, тарелка сразу начинает перегреваться. Значит, до прогара жить клапану остается недолго.

Выглядит это как цепная реакция. Небольшая неплотность в сопряжении тарелки и седла приводит к прорыву газов. Отвод тепла от тарелки в этом месте отсутствует, и тарелка перегревается. Неплотность увеличивается, а вместе с ней растет и температура тарелки. В конце концов материал начинает разрушаться, туда устремляется еще больше горячих газов, и дефект тарелки быстро распространяется до тех пор, пока цилиндр полностью не выключается из работы из-за отсутствия компрессии.

Как видим, хорошее сопряжение тарелки с седлом «убивает» сразу «двух зайцев»: снижает температуру клапана до приемлемого уровня и обеспечивает герметичность. И трудно сказать, что важнее. По крайней мере, для работоспособности самого клапана важно первое, а для двигателя в целом - второе (имеются в виду хорошие пусковые свойства, мощностные характеристики, экономичность).

Кроме указанных условий, работа клапана (открытие и закрытие) должна быть достаточно «мягкой» и не вызывать излишнего шума. Шум или, точнее, стук клапанов - верный признак неисправности, а возникающие при стуке ударные нагрузки нередко сами по себе вызывают еще более серьезные неисправности и даже поломки клапанов.

Откуда берется стук?

Причин несколько. Самая простая уже упомянута - большой зазор в приводе. Кулачок распредвала из-за этого набегает на толкатель (рычаг или коромысло) не плавно, а с ударом, который тем сильнее, чем больше зазор.

Что страдает в данном случае в первую очередь? То, что воспринимает ударную нагрузку: рабочие поверхности кулачка распредвала и толкателя, а также опорная поверхность толкателя и торец стержня клапана. На них нередко образуются повреждения в виде точечных раковин, которые в дальнейшем расширяются и углубляются.

Но этим дело не ограничивается. Клапан не только с ударом открывается, но также резко, со стуком, закрывается. А это значит, что ударная нагрузка при закрытии приходится на уплотнительную фаску клапана и седло. Кроме того, в момент удара при посадке на седло на стержень клапана действует большая растягивающая нагрузка от пружины. Длительная работа в таких условиях весьма опасна: тарелка может просто оторваться от стержня либо стержень разрушится по другому слабому месту - канавке для сухарей.

Но допустим, что зазоры в приводе клапанов нормальные, а стук все равно прослушивается.Чаще всего причина такого стука кроется в большом зазоре между стержнем клапана и направляющей втулкой. Ситуация эта наиболее характерна для старых, изрядно походивших, моторов. Иногда стук клапана связан с неконцентричностью седла и отверстия направляющей втулки, что является следствием перегрева головки блока или неправильно выполненного ремонта. При этом клапан садится на седло сначала одним краем тарелки, и только затем, перекатываясь во втулке в пределах зазора, полностью. Из-за этого, кстати, износ направляющей втулки быстро прогрессирует.

Быстрый износ направляющей втулки и стук клапана возникают и по другим, более сложным, причинам. Например, когда гнездо цилиндрического толкателя клапана несоосно, либо имеет перекос по отношению ко втулке. Подобный дефект иногда встречается на отечественных моторах. Стук возможен также из-за повышенных зазоров в деталях привода - в осях коромысел, в гнездах цилиндрических толкателей, а также в подшипниках распределительного вала.

Все эти стуки на слух достаточно похожи, и поэтому часто выделить конкретную причину без разборки и внимательной ревизии состояния деталей не удается. Но в любом случае нужно иметь в виду, что раз есть стук, значит, нагрузки в местах контакта деталей носят ударный характер. Как правило, такой стук быстро прогрессирует, что грозит не только износом клапанов и сопряженных с ними деталей, но и их поломкой.

Почему сломался клапан?

Сам по себе стук может и не вызвать поломку. Но в любом случае важно понять, почему клапан начал стучать? А причин, спровоцировавших появление стука, оказывается, немало...

Самая распространенная - неграмотная эксплуатация, неквалифицированное и несвоевременное обслуживание двигателя. Очевидно, регулировка зазоров в приводе клапанов от случая к случаю - верный способ ускорить износы, вызвать стуки, а затем и поломки.

Очень опасно при регулировке устанавливать слишком малые зазоры: при работе двигателя клапаны нагреются, их длина увеличится, и, когда зазор выберется полностью, клапаны «повиснут». А тогда неплотная посадка на седло приведет к перегреву тарелок и прогару.

Довольно распространенная причина прогара выпускных клапанов - слишком позднее зажигание. Особенно если двигатель длительное время работает на больших частотах вращения и нагрузках. Но и раннее зажигание - тоже для клапанов не подарок, ведь температура газов в цилиндре в этом случае максимальна. Значит, неправильная установка опережения зажигания вызывает не только потерю мощности и увеличение расхода топлива, но и неисправности клапанов.

Использование некачественного масла - тоже возможная причина износа втулок и стержней клапанов. Кроме того, такое масло имеет свойство коксоваться в нижней части стержней клапанов. Из-за этого клапан будет все туже ходить во втулке, а затем и вовсе может заклинить в ней.

В конце концов он получит-таки поршнем по тарелке со всеми вытекающими последствиями.

Нагар, откладывающийся на тарелках клапанов (особенно впускных), например, из-за износа маслосъемных колпачков, тоже небезобидная вещь. Достигая солидной толщины, нагар начинает откалываться. И частицы довольно крупных размеров легко могут попасть между фаской и седлом клапана. А после этого плохой контакт с седлом и перегрев тарелки неминуем.

Интересно отметить, что значительные отложения нагара на клапанах, вызывающие подобные неприятности, далеко не всегда связаны с износом маслосъемных колпачков. Судите сами: повышенное давление в картере из-за неисправности системы вентиляции или износа цилиндропоршневой группы легко может выдавливать масло к тарелкам клапанов даже через самые новые колпачки.

Некоторые «горячие головы» предпочитают отсоединять шланг вентиляции картера от воздушного фильтра и выводить его куда-нибудь под днище автомобиля - так якобы мотору «легче дышится». И невдомек им, что на некоторых режимах в картере создается разрежение, и пыль, засасываемая в двигатель через шланг, не только быстро загрязняет масло и масляный фильтр, но и попадает к направляющим втулкам и стержням клапанов. Комментарии, как говорится, излишни.

Но, пожалуй, самые серьезные последствия для клапанов таит в себе несоблюдение сроков замены ремня привода распределительного вала. О том, что на многих современных моторах клапаны в случае обрыва ремня деформируются, мы уже писали (см. «АБС-авто», 1999 г., № 6). Добавим только, что попытки поставить новый ремень и так доехать, к примеру, до гаража, редко оканчиваются благополучно. Деформированные клапаны каждый раз при посадке на седло испытывают большие изгибающие нагрузки и через 15 минут работы, как правило, ломаются. А такая поломка клапана - это, как минимум, замена поршня, головки блока, шатуна.

Целый ряд проблем вносит в работу клапанов некачественно выполненный ремонт. Например, наиболее «опытные» механики не утруждают себя использованием специальных приспособлений для сжатия пружин клапанов. Их «коронные» инструменты - стальная труба и молоток: стукнул посильнее - и порядок. Только вот клапан может получить повреждение по канавке для сухарей. А потом, много позже, в этом месте сломаться.

Очень опасно попадание абразивной пасты в направляющую втулку во время притирки клапана к седлу. Промыть такую втулку - целая история. Но если этого не сделать, история получится с продолжением максимум на 10 тысяч километров пробега. После этого износ втулки и стержня, скорее всего, превысит все разумные пределы.

Некоторые механики стремятся сделать зазор клапана во втулке как можно меньше. Это заблуждение нередко приводит к заклиниванию клапана с весьма неприятными последствиями.

Еще одна ошибка - притирка клапанов без правки седел. Как показывает практика, после длительной эксплуатации и особенно после замены направляющих втулок их несоосность с седлами - обычное дело. В подобных случаях одна лишь притирка, скорее всего, приведет к стуку клапанов и быстрому износу деталей.

Когда головка блока полностью собрана с клапанами, очень легко испортить всю работу, обстукивая клапаны молотком. Результат может быть тот же, что и при «ударной» разборке, особенно у современных многоклапанных двигателей с клапанами малого диаметра.

Из всех этих факторов складывается довольно ясная картина: когда клапан неисправен, ему, скорее всего, кто-то в этом «помог».

И задача механика - не только не стать очередным «помощником», но ликвидировать все последствия прежней «помощи», которые обычно несут на себе после долгой работы клапаны и другие детали. Только так можно быть уверенным, что клапан не подведет.

Разрушение по пазу сухаря может случиться из-за неправильной разборки и сборки клапана, а также вследствие больших зазоров в приводе

Когда масло легко проникает через зазор между стержнем и направляющей втулкой, тарелка клапана быстро покрывается нагаром

Скол на тарелке образуется из-за неплотной посадки в седле, ударных нагрузок или ненормального горения топлива

Поломка клапана от больших механических перегрузок. Причиной могут стать большой зазор в приводе, заклинивание клапана, превышение максимальной частоты вращения, разрушение пружины, деформация стержня или несоосность седла с направляющей втулкой.

Большой зазор А между стержнем и направляющей втулкой приводит к перекосам и ударам по краю тарелки, что грозит поломкой клапана

публикуется в сокращении) АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук Требования и к материалам прокладок, и к технологиям их производства весьма высоки и повышаются вместе с ростом мощности двигателей. Суть всех встречающихся на практике дефектов прокладок — в самой схеме уплотнения стыка блока с головкой цилиндров. Действительно, прокладка должна обеспечить одновременно уплотнение газовое (полость цилиндра), водяное (каналы системы охлаждения) и масляное (каналы масляной системы). Близкое расположение этих каналов и полостей друг к другу, очевидно, может привести к внутренней негерметичности. Но и внешняя негерметичность тоже не подарок.

Прокладка ГБЦ может потерять герметичность по многим причинам. Но главными все-таки остаются нарушения правил эксплуатации, технологии обслуживания и ремонта автомобиля. Не менее важно отметить, что внешние проявления неисправности прокладки ГБЦ тоже весьма разнообразны. Можно даже сказать, что один отдельно взятый симптом редко появляется независимо от другого. Но, взятые вместе, они позволяют провести диагностику и достаточно точно установить причину неисправности. Разумеется, для правильной диагностики необходимы опыт и знание двигателя, включая конструкцию и рабочие процессы, происходящие внутри него. И тогда по обнаруженным следам масла или охлаждающей жидкости, изменению цвета жидкостей или деталей, по отложениям нагара, следам обжатия, обгорания или эрозии на поверхности деталей будет установлена истина.

Дефекты прокладок после длительной эксплуатации автомобиля чаще всего связаны с вовремя не замеченными и не устраненными неисправностями системы охлаждения, реже — с нарушениями процесса сгорания (детонация, калильное зажигание). Напротив, после ремонта двигателя по статистике в более чем 80% случаев прокладка повреждается из-за неправильной затяжки болтов (в том числе из-за несоблюдения момента и порядка затяжки).

Перегрев — одна из основных причин повреждения прокладок. Да и не только их: при перегреве часто деформируется плоскость головки, а иногда и блока цилиндров. Но в первую очередь страдает, конечно, головка блока. Помимо локального перегрева отдельных участков камер сгорания, вызывающего появление трещин, общий нагрев головки ведет к увеличению усилия обжатия прокладки, поскольку алюминиевый сплав головки расширяется больше, чем сталь болтов. После охлаждения сдавленная прокладка может уже не обеспечить герметичность там, где удельное давление (усилие, отнесенное к площади поверхности) оказалось слишком низким.

Фактически при перегреве происходит своего рода «отвердевание» поверхностных слоев прокладки, вследствие чего она теряет эластичность и уже не может обеспечить уплотнение соединения головки с блоком цилиндров по всей плоскости. Обнаружить причину, т.е. установить, что прокладка «потекла» из-за перегрева двигателя, можно при ее осмотре. Обычно в подобных случаях поверхность прокладки становится твердой, а в отдельных местах вблизи камер сгорания — обугленной.

 Ремонт в данном случае редко ограничивается только заменой прокладки. Помимо обработки плоскости головки будет совсем не лишним найти причину перегрева в системе охлаждения — возможно, имеется неисправность термостата, вентилятора или просто течь шлангов (см. "АБС-авто", № 4, 1999). Но, допустим, двигатель был сильно перегрет, а прокладка вроде бы устояла. В подобных ситуациях два выхода: либо испытывать судьбу, ожидая, когда появится течь (а так оно, скорее всего, и будет), или все-таки сразу заменить прокладку.

 Второе решение будет более удачным: ведь, как ни крути, а запланированный ремонт лучше неожиданной поломки в дороге. Если прокладка не обжата как следует, то она точно «потечет». Обычно такое бывает, когда болты головки не затянуты должным образом. Но подобные ошибки сегодня — скорее исключение, чем правило: необходимая информация есть теперь на любой СТО. Другое дело, когда все затянуто правильно, а прокладка не обжалась. В чем дело? Причины обычно кроются в нарушениях элементарных ремонтных технологий. Например, в руководствах по ремонту пишут, что резьбовую часть болтов перед затяжкой надо смазать маслом. А если не смазать? Тогда момент затяжки почти весь уйдет на преодоление сил трения в резьбе, а вовсе не на прижатие головки к блоку.

 Может, это одна из причин того, что на некоторых современных двигателях резьбовая часть болтов имеет покрытие? Такие болты смазывать не надо. А если серьезно, то «твердая» смазка гораздо более эффективна и значительно улучшает работу болтов (напомним, что у обычных болтов только 25% момента непосредственно преобразуется в усилие затяжки). Еще хуже, когда болты слишком обильно облиты маслом. В данном случае известное правило «кашу маслом не испортишь» не сработает: масло несжимаемо, заполнив резьбовое отверстие, оно просто не пустит болт дальше. И хорошо еще, если блок не треснет по резьбовым отверстиям. На современных двигателях часто применяют болты, работающие на пределе текучести. После однократного использования их полагается менять на новые, поскольку они могут недопустимо вытягиваться. То, что прокладка не была обжата должным образом, легко обнаружить при ее осмотре.

Часто на ней вообще практически нет следов обжатия, а толщина осталась такой же, как у новой прокладки. В подобных случаях течь появляется в первые же часы работы двигателя, что и указывает на истинную причину неисправности. Профилактика здесь проста: надо точно выполнять все рекомендации производителей по моменту, порядку затяжки и замене болтов, а также их смазке перед сборкой. Известно, что в зависимости от материала и конструкции прокладки могут «слабнуть» под действием температуры и вибраций. И если после некоторого времени работы двигателя не провести повторной затяжки болтов, удельное давление в стыке головки с блоком может недопустимо снизиться, после чего прокладка «потечет».

Повторную затяжку требуют не все двигатели и не все прокладки. Но когда такие рекомендации дает производитель двигателя, выполнять их надо неукоснительно. Если это не сделать, течь появится через несколько тысяч километров пробега автомобиля, что прямо укажет на причину такой неисправности. К нарушениям процесса горения в двигателе относят детонацию и калильное зажигание. Не вдаваясь в их природу (это тема отдельного разговора), укажем, что эти явления вызывают значительный рост температуры на отдельных участках камеры сгорания. Чрезмерное давление в цилиндре, возникающее из-за преждевременного воспламенения топливной смеси, резко увеличивает нагрузки на головку блока, «растягивая» болты и уменьшая тем самым усилие сжатия прокладки. А ударные волны детонации «стучат» не только по ушам водителя, но и по окантовке прокладки ГБЦ. То, что именно нарушение процесса сгорания явилось причиной повреждения прокладки, часто удается установить по ее виду. В подобных случаях она нередко прогорает между цилиндрами.

Прогар по окантовке часто сопровождается эрозией поверхности головки блока и самой окантовки вблизи повреждения. Изменение цвета материала прокладки возле окантовки также может свидетельствовать о высокой температуре в камере сгорания. Устранить причины, вызвавшие повреждение прокладки, нетрудно. Достаточно установить правильный угол опережения зажигания, поставить требуемые для данного двигателя свечи и залить в бак бензин с соответствующим октановым числом. Правда, в некоторых случаях этого может оказаться недостаточно. Механические проблемы.

Как известно, прокладка ГБЦ — весьма деликатная деталь, легко повреждаемая при неаккуратном обращении. Если она имеет явные дефекты, то ставить ее либо опасно, либо просто бессмысленно — все равно рано или поздно «потечет». То же самое относится и к попыткам повторно использовать старую прокладку. Ее материал уже обжат и никогда не обеспечит надежного уплотнения. Может быть, на несколько тысяч километров ее и хватит, но это можно рассматривать только как временный выход из положения. Иногда прогар прокладки происходит из-за попадания между ней и уплотняемой поверхностью инородных материалов. Такое вполне может случиться, если не очистить плоскости головки и блока от остатков старой прокладки перед установкой новой.

 Кстати, то же самое получится, если плоскости окажутся деформированными — в местах «провалов» удельное давление будет недопустимо низким, и в конце концов уплотнение нарушится. Поэтому перед установкой прокладки проверка плоскостей головки и блока обязательна (см. "АБС-авто", № 4, 1998). Понятно, что деформированную плоскость надо обработать, т.е. выровнять. В одних мастерских головки фрезеруют, в других — шлифуют, а в третьих — притирают на плите с абразивной пастой. А какой способ лучше? Давайте разберемся вместе. Если поверхность слишком грубая, то не исключено просачивание рабочих жидкостей и газов. Напротив, если поверхность чрезмерно гладкая, то возможно скольжение прокладки между уплотняемыми деталями и в конечном счете потеря герметичности. Поэтому при обработке поверхностей головки и блока не все средства хороши. Желательно обеспечить определенную оптимальную шероховатость, которая в основном зависит от материалов уплотняемых деталей (см. таблицу 2). Конечно, это общие рекомендации. Но ими вполне можно пользоваться, когда другие данные, например, от производителя двигателя, отсутствуют.

Прогар прокладки из-за нарушения процесса сгорания: по перемычке между цилиндрами; в рубашку охлаждения (видны следы эрозии окантовки). Дефекты прокладок, ведущие к потере герметичности: из-за попадания инородных материалов между уплотняемыми поверхностями; из-за неаккуратной работы с прокладкой.

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Зубчатый ремень в приводе газораспределительного механизма — непременный атрибут большинства двигателей современных автомобилей. Между тем еще каких-нибудь 30 лет назад в двигателестроении безраздельно господствовал цепной привод ГРМ. И отдельные попытки применения ремней встречались с недоверием и откровенным скептицизмом. Понадобились десятилетия и новые технологии, чтобы ременный привод стал доминировать. Хотя его преимущества совершенно очевидны. Низкая шумность, возможность упрощения конструкций двигателя и снижения его массы — веские причины для многих автопроизводителей, чтобы отдать предпочтение именно ременному приводу.

Вместе с тем однозначно говорить, что ремень лучше, нельзя. Цепь гораздо долговечнее. Цепной привод способен работать столько же, сколько мотор. А ремень — увы, нет.

Из-за этого некоторые фирмы продолжают разрабатывать и выпускать двигатели с цепным приводом, практически не требующим обслуживания (вспомним, что подавляющее большинство двигателей с цепным приводом имеют и автоматические натяжители цепи). Срок же службы ремня невелик и в среднем не превышает 60 тыс. км пробега. За простоту конструкции приходится расплачиваться обслуживанием привода. То есть периодически менять ремень, следить за его состоянием, подтягивать...

Только тогда можно быть спокойным, что ремень не подведет — не оборвется или не останется без зубьев. А происходит это обычно в самый неподходящий момент...

Если ремень оборвался

Обрыв и срезание зубьев ремня — самые распространенные отказы ременного привода. Почему это происходит, мы еще поговорим, но сначала о — неприятном.

Последствия обрыва ремня напрямую связаны с конструкцией двигателя. Весь вопрос в том, достают ли клапаны в открытом положении до днища поршня, когда последний находится в верхней мертвой точке (ВМТ). Если нет, то все в порядке: обрыв ремня не грозит катастрофой и достаточно просто заменить порванный ремень новым. Но «легко отделаться» удается редко. Современные моторы с многоклапанными головками, их камеры сгорания специальной формы, призванные улучшить мощностные, экономические и экологические характеристики двигателя, - все это противоречит глубоким выборкам (цековкам) в поршне под тарелки клапанов. Значит, при обрыве ремня клапаны непременно встретятся с поршнями...

Результат? В лучшем случае — деформация стержней клапанов. Между прочим, для замены (кстати, вместе с маслосъемными колпачками) загнувшихся в буквальном смысле слова клапанов необходим как минимум демонтаж головки блока цилиндров. Если обрыв ремня произошел на холостых оборотах — потребуется замена 3 клапанов; если на рабочих режимах, - вплоть до замены всех клапанов. Это как повезет.

Еще хуже, если треснут направляющие втулки. Это уже потребует ремонта головки блока.

Ну а больше всего неприятностей возникает при обрыве ремня у дизелей. Там хода клапанов при положении поршня в ВМТ практически нет — ведь камера сгорания дизеля имеет очень малый объем. Значит, жди поломки толкателей, распредвала, крышек его подшипников и даже деформации шатунов. И, не дай Бог, обрыв ремня случится при высокой частоте вращения! Если сломается какой-нибудь клапан, придется менять поршень, ремонтировать блок цилиндров, возможно, менять шатун и даже головку блока... Ремонт похлеще капитального!

Но даже если, по счастью, все цело и надо только заменить ремень, работы предстоит немало. На современном автомобиле к нему так просто не подобраться — под капотом все агрегаты довольно плотно «упакованы», иной раз и руки не просунешь. Нечего и думать о замене ремня где-нибудь «в пути». Без хорошего инструмента и подъемника с этой работой точно не справиться, да и опыт - не последнее дело.

Что случилось с ремнем?

Надежная работа ременного привода ГРМ возможна только при определенных условиях: на ремень не попадают масло и грязь, шкивы и ролики, по которым «ходит» ремень, находятся в хорошем состоянии, а сам ремень правильно натянут.

Чтобы лучше понять, почему именно эти условия так важны, надо повнимательнее присмотреться к конструкции зубчатого ремня. Она вроде бы достаточно проста. Основу ее составляет корд — прочные нити из стекловолокна. Внутренняя рабочая часть ремня — зубья — выполняется обычно из нейлона: он имеет высокую износостойкость и прочность при хорошей эластичности. Снаружи расположен «чулок» — слой резины толщиной 5 мм. Согласитесь, это чем-то напоминает автомобильную покрышку: прочный корд, износостойкий протектор (зубья)... Недаром многие знаменитые производители шин (Continental, Firestone, GoodYear, Kleber, Pirelli, Semperit) имеют в своей производственной программе и ремни ГРМ.

Ремни, применяемые или применявшиеся на двигателях автомобилей всего мира, весьма разнообразны по своим параметрам. К примеру, число зубьев может меняться в пределах 257, ширина ремней — от 13 до 34 мм, шаг зубьев — от 5 до 12,7 мм. Кроме того, насчитывается около 20 типов профилей зуба — от простого трапециевидного на старых моторах до сложного эвольвентного на современных. Вся эта информация приведена в каталогах основных производителей ремней — это, помимо уже упомянутых нами, Bosch, Dayco, Gates, Rofan и многие другие.

Исходя только из анализа конструкции уже можно определить, что случится с ремнем при тех или иных отклонениях от нормальных условий его работы.

Например, если через сальники просачивается масло, а через щели в соединениях кожуха летят пыль и грязь, то ремню, скорее всего, жить осталось недолго. Масло разрушает резину (она набухает и отслаивается от корда), а пыль, особенно в смеси с тем же маслом — прекрасный абразивный препарат, резко увеличивающий износ зубьев шкива и ремня (правда, более мягкие зубья ремня страдают меньше).

Изношенный по зубьям шкив вызывает перераспределение нагрузки — максимум ее приходится на зубья ремня в местах его захода и схода со шкива. Другие зоны нагружены меньше или не нагружены вовсе (ремень «не ложится» на шкив). Последствия очевидны — у основания зубьев появятся трещины, которые быстро приведут к отрыву зубьев. Менять в описанном случае придется не только старый ремень, но и поврежденный шкив. Иначе быстро погибнет новый ремень.

Немало неприятностей мы создаем сами себе, допуская ошибки при замене ремня. Очень распространена его перетяжка - видимо, некоторым механикам кажется, что чем сильнее натянуть ремень, тем лучше он будет работать. А то, что перетянутый ремень «воет» — ничего, дескать, приработается.

Это не так. Ведь прочность нитей корда ограничена. И чем сильнее натянут ремень, тем быстрее порвутся нити. То же самое произойдет, если ремень при хранении был очень сильно перегнут.

Ослабленный ремень тоже долго ходить не будет. Колебания его, возникающие в подобном случае, приводят к нерасчетным нагрузкам на зубья все там же — в местах схода и, особенно, захода на шкив (зубья ремня не попадают во впадины зубьев шкива). Подрез и последующий отрыв зубьев от основы неминуем.

Нежданные проблемы грозят тому, кто умудрится снять (или просто не поставить при замене ремня) отдельные детали кожуха. Один залетевший из-под колес «шальной» камень — и ремень мгновенно порван.

Рассеянность вообще-то опасна всегда. Иногда при замене ремня забывают о его натяжных и паразитных (направляющих) роликах. А ведь многие автопроизводители (к примеру, VW) однозначно рекомендуют менять ролики одновременно с ремнем! И это понятно: подшипник ролика может начать подклинивать из-за износа или недостаточной смазки. Итог — перегрев наружного резинового слоя ремня, появление на нем сетки поперечных трещин. В дальнейшем — отслоение резины от корда и обрыв ремня.

Большое число неисправностей связано с повреждением фланцев шкивов, например, при их неаккуратном или неправильном демонтаже с валов. Деформированный фланец шкива работает как нож, постепенно все больше и больше подрезая края ремня. «Грызет» край ремня и неправильно поставленный или деформированный кожух.

Иногда из-за нарушения технологии ремонта или сборки двигателя шкивы оказываются расположенными в разных плоскостях. Эффект будет тот же, что и при деформации фланцев шкивов.

Из редких неисправностей в ременном приводе отметим случаи заклинивания распределительного вала из-за недостатка смазки. То же может произойти и с валиком водяного насоса при разрушении его подшипника (в конструкциях, где водяной насос приводится ремнем ГРМ). Резко возрастает усилие в приводе, и на ремне сразу срезаются 7 и более зубьев.

Неприятности с ременным приводом могут возникнуть и при весьма «загадочных» обстоятельствах. Допустим, ремонтируем двигатель, у которого ремень незадолго до этого менялся. Спрашивается, можно ли опять поставить тот же самый ремень? Можно, но только так, как он стоял до демонтажа. Если перепутать направление движения ремня (скажем, не пометив это направление перед снятием), ремень ходить долго не будет. Зубья, длительное время испытывавшие нагрузку в одну сторону, при изменении ее направления на обратное начинают «трещать» и срезаются. Вот такая маленькая тонкость...

Чтобы ремень ходил долго

За ремнем надо следить. И выполнять некоторые совсем несложные правила. Вот они.

Главное — ремень должен быть правильно натянут. Как, насколько сильно его натянуть, можно прочитать в различных пособиях по ремонту, а также в отличной книге издательства Autodata «Ремни привода механизма газораспределения и навесных агрегатов двигателя».

Не менее важно, чтобы нормально работал механизм натяжения ремня. Особенно существенно это для двигателей с автоматическим натяжителем — из-за дефектов последнего ремень нередко оказывается ослабленным со всеми вытекающими последствиями. Кстати, дефект натяжителя часто появляется не сам по себе, а как следствие низкой квалификации механиков. Автор был свидетелем двух подобных случаев при замене ремня на двигателях Mitsubishi. В первом механик открыл зарядный штуцер и стравил масло из натяжителя, чтобы легче его сжать. Во втором — умудрился даже просверлить в натяжителе отверстие с той же целью. Результат одинаков — потребовался новый натяжитель. А стоило всего-навсего заглянуть в нужную книгу. И потратить немного времени на теорию вопроса.

Еще одно непременное условие нормальной работы ременного привода — легкость вращения всех валов. Совершенно очевидно, что если один из них вращается туго или с неравномерным усилием (заедает), то, прежде чем ставить новый ремень, надо устранить причину заедания.

Кроме того, важно убедиться, что нет подтеканий масла, в результате которых оно может попасть на ремень. Если такое случилось, надо немедленно устранить течь, тщательно вымыть ремень и шкивы от масла, а лучше всего — заменить ремень.

И последнее, самое простое правило: ременный привод всегда надо держать в чистоте.

Иначе рассчитывать на надежность и долговечность работы ремня не придется.

Ремень газораспределительного механизма устроен достаточно просто:
1 - нити корда из стекловолокна;
2 - нейлоновая рабочая часть (зубья);
3 - резиновый «чулок»

Подрез зубьев у основания часто возникает из-за слабого натяжения ремня или изношенного шкива.

Обрыв из-за потери адгезии (прочности соединения) различных слоев ремня. Обычно возникает из-за длительного воздействия масла или топлива.

Попадание посторонних предметов между ремнем и шкивом обычно приводит к «косому» обрыву.

(Заметки практика, с которыми могут не согласиться «теоретики»)
(публикуется в сокращении)

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Действительно, какие могут быть сомнения в необходимости промывки двигателя? Ведь известно, что со временем на стенках цилиндров образуются твердые или мазеобразные отложения, нагар и смолы. Твердые частицы, отделившись от стенок, могут, например, попасть в систему смазки, повредить детали трущихся пар, вызвать отказ гидротолкателей в приводе клапанов.

Значит, промывать? Не будем торопиться. Сначала посмотрим, откуда берутся все эти смолы, мази и прочие отложения.

По сути своей инородные отложения на стенках - это продукты механического износа трущихся поверхностей, термического разложения масла, а также нерастворимые химические соединения, рождающиеся в жестких условиях работы двигателя. Избежать появления отложений невозможно, а вот свести к минимуму их вредное воздействие как раз и должно моторное масло.

Действительно, масло содержит комплекс присадок, в том числе и специальные - моющие. Они поддерживают твердые частицы во взвешенном состоянии, т.е. не дают им оседать на рабочих поверхностях.

Низкосортные, дешевые, а также сомнительного качества масла, мягко говоря, не обеспечивают требуемой чистоты стенок. Они не только не смывают, но увеличивают слой отложений на деталях. К такому же эффекту приводит эксплуатация автомобиля на качественном, но не соответствующем конкретному двигателю, масле. Порой автомобилисты пренебрегают классификацией масла по API, заливают в двигатель масла типа SF/CC (для бензиновых 88гг. выпуска и дизельных двигателей без турбонаддува), а потом удивляются: почему это под клапанной крышкой так много нагара?

К слову сказать, аналогичная ситуация может возникнуть не только по причине масла, но также из-за определенных условий эксплуатации. Например, при коротких поездках в холодное время года. Масло да и двигатель в целом не успевают прогреться должным образом. Прорыв газов через поршневые кольца, не сгоревшее из-за переобогащения смеси топливо, конденсация на холодных стенках двигателя водяных паров, содержащихся в картерных газах, - все это усугубляет картину.

Взвешенные, т.е. не осевшие на стенках твердые частицы удаляются при смене масла. Визуально по состоянию отработанного масла можно судить о степени загрязнения двигателя.

Можно ли избежать негативного процесса образования всякого рода отложений на стенках? Можно. Достаточно соблюдать нехитрые правила эксплуатации двигателя. Одно из них мы уже вскользь упомянули - заливать соответствующее масло, и желательно современное.

А можно использовать масло для современных двигателей класса SH или даже SJ. Такие масла значительно более высокого качества по исходному сырью, они более термостабильны и содержат легирующие добавки нового поколения. Конечно, современное качественное масло (отнюдь не подделка) стоит дорого. Но двигатель - он ведь тоже недешев.

Какое масло предпочесть - минеральное или синтетическое, - вопрос не столь существенный. Кстати, самое распространенное отечественное масло в прежние времена тоже было, что называется, «на высоком качественном уровне» и при правильной эксплуатации заметных отложений не вызывало.

Второе правило - менять масло. Правда, со знаком вопроса - когда? Практика показала - чем чаще, тем чище внутри двигатель. Да и изнашивается меньше. Что совершенно не удивительно, если принять во внимание неумолимый процесс старения масла, сопровождаемый его загрязнением различными веществами. Так что срок смены масла - понятие компромиссное.

С учетом экономических соображений, компромисс этот в наших российских условиях составит 8 тысяч километров.

Кроме того, загрязнений двигателя можно избежать, если правильно отрегулировать систему топливоподачи. В противном случае обогащенная смесь даст нагарообразование в камере сгорания и быстрое почернение масла. Не прибавит двигателю чистоты плохое состояние цилиндропоршневой группы, клапанов, их направляющих втулок и маслосъемных колпачков. Повышенный расход масла и прорыв газов в картер также ускорят загрязнение и старение масла и, соответственно, интенсивность отложений. Но до этого двигатель лучше не доводить.

Промывочное масло содержит повышенное количество моющих агентов и заливается в двигатель после слива отработанного моторного масла. Работа двигателя на промывочном масле допускается непродолжительное время (обычно 10 мин) и только на холостом ходу без нагрузки. После чего масло сливают и заливают свежее моторное (вместе с заменой масляного фильтра).

Моющая добавка в масло - это концентрат моющих агентов. Добавка заливается в двигатель перед сменой старого масла. Режимы и продолжительность работы двигателя на такой масляной смеси аналогичны приведенным выше для промывочного масла, за что подобные добавки среди водителей получили название «пятиминутные».

Но прежде чем мыть, предлагаем сначала проанализировать этот процесс. Что происходит при промывке двигателя? Отложения смываются со стенок, в результате чего грязь попадает в поддон. А теперь посмотрим в поддон - картина будет любопытная. Смытые частицы и конгломераты загрязнений «присосало» к маслоприемнику, точнее, к его сетке. И застряли они в ней, что называется, накрепко.

Ладно, глушим двигатель, сливаем грязное промывочное масло, ставим фильтр, наливаем свежее рабочее. Что стало с грязью на сетке маслоприемника? Часть ее удалена вместе с промывочным маслом, а часть залипла на сетке. Дальше возможны два варианта развития событий.

Самый безболезненный - если оставшиеся частицы потом затянет в систему смазки. Тогда после маслонасоса они будут задержаны фильтром и к трущимся деталям не попадут.

Хуже, если грязь останется на сетке. Когда к ней добавятся частицы, оставшиеся в поддоне и на стенках после слива промывочного масла, быть беде. Застрявшие частицы могут резко уменьшить подачу масла в двигатель, особенно на больших оборотах. Или даже полностью перекрыть маслоприемник.

Чего же мы добились промывкой? Грубо говоря - нарушения пусть относительного, но тем не менее равновесного рабочего состояния двигателя. Последствия такого нарушения непредсказуемы.

Скажете, сказки? Ничуть. Посмотрите на фотографии. Они сделаны после разборки двигателя Mitsubishi Pajero, у которого «застучал» шатунный вкладыш. Да не один, а сразу несколько. Когда это случилось, спросите? После замены масла с промывкой.

Прежде чем затевать такое дело, целесообразно знать «предысторию» двигателя - кандидата на промывку. Это прежде всего его возраст, когда менялось масло и какое залито, режим эксплуатации.

Если эксплуатируется изначально новый двигатель, промывать его не надо вовсе, тем более когда вы используете проверенное масло высокого качества. Хотя особая радивость в этом вопросе тоже не повредит: хотите промыть - пожалуйста, хуже не будет.

При смене минерального рабочего масла на синтетическое можно также обойтись без промывки двигателя. Несливаемый остаток «минералки» слишком мал, чтобы оказать существенное влияние на работу двигателя.

Другое дело, если двигатель старый. В этом случае не советуем рисковать с промывкой, особенно, когда предыстория эксплуатации автомобиля неизвестна. Бывало, что даже простая замена рабочего масла на высококачественное новое в таком двигателе давала отрицательный эффект - смытые с внутренних стенок отложения в конечном счете выводили двигатель из строя.

Невозможно конкретно сказать, что будет в промежуточных вариантах между двумя описанными крайностями. Когда на итог в конечном счете влияет не «природа» промывочного масла, а целый ряд других факторов (вид отложений на стенках, конструктивные особенности двигателя, конфигурация поддона, маслоприемника, режим эксплуатации автомобиля и многое другое), вступает в действие простой «закон игрока»: может, повезет, и двигателю от промывки «полегчает», а может, и нет.

Словом, мыть или не мыть - вопрос совсем не простой и не однозначный. К тому же наш журнал - вовсе не истина в последней инстанции. Мы только высказали мнение практиков-мотористов, подтвержденное многолетним опытом.

Задиры на шейках коленвала (А) и вкладышах (Б), нижние головки «пострадавших» шатунов (В) деформировались, а смазочные отверстия забились расплавленным рабочим слоем.

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Газ в качестве автомобильного топлива обладает рядом преимуществ в сравнении с бензином. Он имеет меньшую склонность к детонации, обеспечивает лучшие показатели по токсичности выхлопа и, самое главное, газ ощутимо дешевле бензина, что сулит немалую экономию. Так и хочется воскликнуть «даешь газ!!!». Однако эксплуатация современных впрысковых моторов, оборудованных газобалонной аппаратурой, иногда охлаждает «газовый» энтузиазм и наглядно демонстрирует, что первход на газовое топливо далеко не всегда оборачивается материальной выгодой. Тому есть «свежий» пример из практики работы моторного центра фирмы «АБ-Инжиниринг».

История начиналась так. В моторный центр обратился владелец автомобиля Honda Accord с жалобой на работу двигателя. Из разговора с ним выяснилось, что машина была приобретена в Голландии несколько месяцев тому назад. «Аппарат», оснащенный цилиндровым многоклапанным двигателем объемом 2,2 л, по нашим меркам довольно новый, был произведен в 1998 году. Двигатель автомобиля имел комбинированную систему питания. На машину задолго до момента покупки было установлено газобаллонное оборудование для возможности работы на сжиженном нефтяном газе.

Надо отметить, что большинство импортных автомобилей с газобаллонной аппаратурой поступает к нам из стран Бенилюкс. Причина любви тамошних жителей к газовому топливу носит исключительно меркантильный характер. Владельцы автомобилей, использующих газ, не только экономят на стоимости топлива, но и, согласно местному законодательству, пользуются немалыми налоговыми льготами. Так их мудрое правительство борется за снижение вредных выбросов в атмосферу.

Так вот, поначалу хозяин автомобиля был доволен приобретением, хотя порой замечал, что двигатель работает с небольшими сбоями. В течение последующего, непродолжительного периода эксплуатации ситуация стала понемногу ухудшаться. Двигатель работал все более нестабильно, стал ощущаться дефицит мощности. К слову сказать, заметить это несложно. В идеале «хондовский» мотор, оборудованный фирменной системой управления фазами и высотой подъема клапанов VTEC, развивает максимальную мощность 150 л.с. С таким мотором автомобиль со снаряженной массой чуть менее 1,4 т обладает прекрасной энерговооруженностью и, соответственно, отличной динамикой, До «сотни» он должен ускоряться за 9 с! Поскольку о подобной «удали» не было и речи, владелец справедливо решил, что что-то не в порядке.

Первым, довольно естественным действием в такой ситуации было обращение к одному из дилеров Honda. Специалисты дилерской сервисной станции обратили внимание на то, что отсутствуют тепловые зазоры клапанов и попытались их отрегулировать. Напомним, что Honda так же, как и Toyota, избегает применения в своих двигателях гидравлических компенсаторов, отдавая предпочтение схемам с ручной регулировкой. В данной ситуации попытки отрегулировать тепловые зазоры успехом не увенчались, и клиенту было предложено заменить головку блока в сборе. При этом за новую головку и работу по ее замене была объявлена сумма, которая сподвигла владельца искать другие пути решения проблемы. Эти пути и привели его в «АБ-Инжиниринг».

Вскрытие показало:

Пробные пуски и первичное обследование двигателя подтвердили, что претензии к работе газораспределительного механизма вполне обоснованны. Двигатель запускался с трудом, подхватывая отдельными цилиндрами и постепенно включая в работу остальные. На «холостых» его изрядно потряхивало. Не имело смысла гадать, что могло случиться. Было решено воспользоваться эндоскопом и посмотреть, что произошло на самом деле. С помощью «технического глаза» обнаружили, что тарелки выпускных клапанов располагаются на седлах, мягко говоря, в нештатном положении. Последовавший за этим демонтаж ГБЦ подтвердил безошибочность визуального диагноза.

Даже бывалые мотористы не скрывали, что видят такую картину впервые. Тарелки выпускных клапанов пробили в стальных седлах глубокие колодцы. Если бы не коромысла с регулировочными винтами, в которые «насмерть» уперлись стержни клапанов, «обнулив» все зазоры, процесс, похоже, развивался бы и дальше, грозя вовсе непрогнозируемым финалом. Идентичные повреждения седел, но в меньшей степени, были отмечены и на впускных клапанах. Стало ясно, почему предпринимавшиеся ранее попытки регулировки зазоров были тщетными.

Остается удивляться живучести мотора, который при таких дефектах механизма газораспределения продолжал как-то работать. В этой ситуации большую часть фазы открытия выпускные клапаны проходят внутри колодцев, когда удаление отработавших газов затруднено. «Никакая» вентиляция цилиндров, уменьшенная степень сжатия и нарушенное уплотнение клапанов — о какой мощности может идти речь? Кстати об уплотнении клапанов. Поскольку двигатель все же запускался, значит, некая компрессия создавалась. Похоже, что клапаны уплотнялись не по фаскам, а по внешней кромке тарелки в месте ее контакта со стенкой колодца.

За исключением указанных дефектов, внутренности двигателя выглядели более чем пристойно. Камеры сгорания, головки поршней, сами клапаны — все очень чисто, без малейших следов нагара и отложений, что характерно для моторов, продолжительное время работающих на газовом топливе. И все же возникла уверенность, что в происшедшем с клапанным механизмом повинен именно газ.

Слово - обвинению

Это — не первый и не единственный автомобиль марки Honda, который попал в Россию с установленным оборудованием для работы на газе. Такие машины время от времени завозятся из европейских стран. Опыт работы специалистов центра позволяет утверждать, что моторы большинства таких автомобилей имеют те или иные проблемы с клапанным механизмом. Чаще всего наблюдается прогар выпускных клапанов как результат нарушения температурного режима при работе на газовом топливе.

С подобными случаями сталкиваются и на станциях официальных дилеров Honda. Так, наряду с повреждением клапанов отмечались случаи, когда на сводах камер сгорания и днищах поршней образовывались раковины размером с хорошую горошину. Характер повреждений также говорил о том, что это — результат избыточного теплового воздействия.

Такой итог эксплуатации на газе моторов, оснащенных системой впрыска топлива (в частности, двигателей Honda), можно было бы отнести на счет неправильной регулировки газобаллонной аппаратуры. Действительно, к таким последствиям может привести желание еще больше сэкономить, излишне обеднив газовоздушную смесь. В этом случае температура сгорания увеличивается, впрочем, как и при работе на бедной смеси воздуха и бензина.

Чтобы удовлетвориться таким объяснением, нужно согласиться с тем, что европейские установщики газовой аппаратуры предвзято относятся к именитому производителю, совершая частые диверсии в отношении его продукции. Действительно, с моторами других марок такие истории случаются гораздо реже. Во всяком случае, о них меньше слышно.

Если же причина кроется не в регулировке аппаратуры, отвечающей за подачу газа, где искать объяснение уязвимости двигателей Honda с комбинированной системой питания? Попробуем высказать несколько, на наш взгляд, достоверных предположений. Частично они будут опираться на мнение разработчиков отечественных систем управления двигателем, частично - на собственные суждения и мнение технических специалистов столичных дилеров фирмы Honda.

От сомнений — к мнению

Постоянные читатели знают, что на страницах журнала периодически публикуются материалы, посвященные разным аспектам использования весьма перспективного газового топлива. В одном из них, статье «Если ездит ГАЗ на газе» (апрель 2000), рассматриваются трудности перевода на газ автомобилей с двигателями, имеющими электронную систему управления зажиганием и топливоподачей.

Ведущие специалисты ООО «НПП ЭЛКАР» и журнала «Автомобиль и Сервис» отмечают, что в этом случае возникают две основные проблемы. Первая обусловлена тем, что при прочих равных условиях газовоздушная смесь горит медленнее смеси воздуха с бензином. Это означает, что при работе на газе требуется устанавливать большие углы опережения зажигания, чем при использовании бензина. Вторая заключается в том, что при определенной конструкции системы управления двигателем возможности применяемой в настоящее время газобаллонной аппаратуры не достаточны для обеспечения точного дозирования газа. Это неполный перечень вопросов, которые нужно учесть при переходе на комбинированное питание, номы ими ограничимся.

Припомним, что представляет собой система управления PGM-Fi, применяющаяся на двигателях Honda. Она управляет зажиганием, топливоподачей и работой двигателя в режиме холостого хода. Значения угла опережения зажигания хранятся в ПЗУ блока в виде трехмерной «карты», представляющей зависимость УОЗ от нагрузки и частоты вращения двигателя. Естественно, параметры зажигания оптимизированы для работы на штатном топливе, бензине. В этом случае корректный переход на топливо с другими свойствами (скоростью горения, октановым числом, теплотворной способностью и т. д.) требует использования иной «карты» зажигания. Это невозможно без серьезного вмешательства в штатную систему управления, которая к тому же такую возможность и не предусматривает.

Система управления PGM-Fi дозирует топливо, определяя цикловое наполнение цилиндра воздухом. Оно рассчитывается по двум параметрам, измеряемым с помощью датчиков системы: абсолютному давлению во впускном коллекторе и частоте вращения коленчатого вала. Посколькугаз, подаваемый во впускной коллектор, замещает часть поступающего в двигатель воздуха, датчик абсолютного давления (МАР-сенсор) при работе на газе будет давать ошибочную исходную информацию для расчета циклового наполнения с вытекающими отсюда последствиями. Будь метод определения циклового наполнения иным [например, по массовому расходу воздуха, измеряемому тонкопленочным расходомером), этой ошибки можно было бы избежать.

Обвинять производителя в том, что конструкция используемой им системы управления не вполне подходит для перевода автомобиля на газовое топливо, все равно, что предъявлять претензии к автомобилю, что он не летает. Двигатели, о которых идет речь, проектировались с учетом того, что в качестве топлива используется именно бензин. К слову сказать, Honda производит и двухтопливные моторы, которые, помимо бензина, могут работать на сжатом природном газе. Они, например, устанавливаются на автомобили Honda Civic, поставляемые в Америку. В них учтены все особенности, сопровождающие переход с одного вида топлива на другой. В частности, кардинальное изменение законов управления двигателем.

Как обычно решаются упомянутые проблемы? На низкофорсированных карбюраторных двигателях чаще всего — никак. Зажигание устанавливают «под бензин», как наиболее склонный к детонации, вручную регулируют дозатор и мирятся с тем, что режим работы на газе отличается от оптимального — все равно дешевле.

В последнее время появляются устройства, позволяющие автоматически изменять установку угла зажигания при переключении вида топлива. Для ряда впрысковых двигателей отечественной разработки по заказу выпускаются специальные блоки управления. В них заносятся две программы управления зажиганием и предусматривается возможность перехода с одной «карты» на другую. Ведутся работы по совершенствованию дозаторов газа. Здесь основное направление — применение электронного управления подачей газа с использованием обратной связи по датчику кислорода. Реализация такого комплекса мер способствует оптимальной и, главное, безопасной для двигателя работе на «втором топливе».

И все же остается открытым вопрос: почему, несмотря на наличие проблем с установкой зажигания и дозированием топлива, «ГАЗ на газе ездит», a Honda — нет? Если выразиться точнее, почему идентичные проблемы приводят к различным последствиям? Причина, на наш взгляд, в различном типе и степени совершенства двигателей.

Двигатели Honda — принципиально высокооборотные. Это свойство отличает их не только от моторов, которые применяет ГАЗ, но и от продукции прочих мировых производителей. При высокой частоте вращения коленчатого вала оптимальный УОЗ для медленно горящей газовоздушной смеси становится недопустимо большим, так что система управления не в состоянии его отработать, даже если в ней предусмотрена возможность коррекции. Результат — повышение температуры отработавших газов и соответствующее увеличение тепловых нагрузок на элементы камеры сгорания и клапанный механизм. Свой вклад в ухудшение теплового режима двигателя также могут вносить ошибки в дозировании газа, приводящие к обеднению смеси.

Последствия усугубляются тем, что «хондовские» двигатели — высокофорсированные и имеют один из самых высоких показателей удельной мощности. С одной стороны, это свидетельствует об их отменной эффективности как преобразователей тепловой энергии в механическую. Но другой конец этой «палки» — высокая нагруженность всех элементов двигателя, работающих в условиях, близких к предельным. Запасы прочности (во всех смыслах — и механическом, и тепловом) в таких двигателях минимальны. Рабочий процесс в них оптимизирован настолько, что так же малы допустимые отклонения по основным параметрам {зажиганию, дозированию топлива), влияющим на работоспособность и эффективность двигателя.

Низкофорсированные, массивные «тихоходы», напротив, обладают более высоким запасом прочности. Они же более «толстокожи» в смысле допустимого разброса параметров зажигания и топливоподачи, а потому легко «прощают» даже не совсем корректный перевод на комбинированное питание.

О лозунгах

В теоретических отступлениях едва не осталась забытой судьба «Аккорда», <героя> повествования. Она складывалась следующим образом. Увидев метаморфозу, происшедшую с головкой его автомобиля, владелец распорядился газобаллонную установку упразднить. Кстати, при ее демонтаже выяснилось, что она не из самых простых. В аппаратуре было предусмотрено отключение штатных форсунок, а система подачи газа имела электронное управление с коррекцией по датчику кислорода. И тем не менее...

Головка в принципе вполне подлежала восстановлению. Для этого нужно было поменять все седла и на всякий случай — клапаны. Их фаски были изрядно изношены, и после восстановления геометрии кромки тарелок оказались бы слишком тонкими. Это грозило возможностью прогорания при работе на бензине. С учетом того, что и тех и других в многоклапанной ГБЦ числом — аж шестнадцать, вместе с работой выходила далеко «не квадратная» сумма. В целях экономии была приобретена «бэушная», вполне приемлемого качества головка. После небольшого «косметического» ремонта (правка седел, шлифовка фасок, фрезеровка плоскости) она была установлена вместо прежней, оставленной хозяину «на память». Вот и все. Или почти все.

Рассказ о злоключениях «Аккорда» не самоцель, но повод. Повод высказать ряд мыслей, касающихся проблемы «газификации» автотранспорта. Главная беда России — не дураки, не дороги и отнюдь не Чубайс, а всего лишь отсутствие чувства меры. Именно оно (то есть его отсутствие) способно любую, самую здравую идею при ее реализации превратить в полный абсурд. Поэтому, пропагандируя здравую мысль о применении газа в качестве топлива для автотранспорта, хочется предостеречь от возможных призывов к «тотальной газификации всех и вся». Предлагается не забывать об изначальных, основных целях этой акции, а именно — уменьшении количества вредных выбросов в атмосферу и снижении эксплуатационных расходов со стороны владельцев автотранспорта вследствие разницы стоимости двух видов топлива.

Помня об этих «посылах», скажем «ДАЕШЬ ГАЗ!» безусловно:

  • «прожорливому» пассажирскому и грузовому автотранспорту;
  • отечественным легковым автомобилям, оборудованным неэкономичными двигателями архаичной конструкции, которые, похоже, никогда не узнают о существовании экологических «евронорм».

В остальных случаях стоит действовать осмотрительно и с разбором, без оглядки на Европу и стремления улучшить и без того хорошее. Судите сами: подавляющее большинство импортных двигателей последнего поколения уже соответствуют требованиям экологического стандарта EURO IV, которые будут приняты к исполнению лишь в 2005 году.

Что касается экономии, то, например, двигатель Honda, о котором шла речь, при мощности в 150 «лошадей» в смешанном ездовом цикле на 100 км пробега потребляет 8,5 л бензина АИ-95. Прикиньте «экономию» и просчитайте ее возможные последствия. Пожалуй, это тот самый случай, когда, на самом деле, «лучшее — враг хорошего».

Глядя на название статьи, чувствуется некая незавершенность и эдакая недосказанность. Попробуем их устранить. Итак: «Коль на газе ездит «Хонда», ... мотористу быть при деньгах!». Ну вот, немного не в рифму, зато по сути верно.

Газораспределительный механизм двигателя Honda с рабочим объемом 2,2 л выполнен по схеме SOHC и оснащен системой управления фазами и высотой подъема клапанов VTEC.

Идеальное состояние поверхности камер сгорания, клапанов и изоляторов свечей зажигания указывает на то, что двигатель продолжительное время работал на газе. Состояние головки можно было бы назвать отличным, если бы не одно "но"...

... даже бывалым мотористам такая картина показалась необычной. Тарелки выпускных клапанов пробили в седлах глубокие колодцы. Аналогичные повреждения, но в меньшей степени были отмечены и на седлах впускных клапанов.

В большинстве современных систем управления двигателем для определения оптимального момента зажигания при работе на штатном топливе используется так называемая карта зажигания — сложная зависимость УОЗ от нагрузки на двигатель и его оборотов. Корректный переход на газовое топливо требует использования другой карты.

Вряд ли в ближайшем будущем двигатель ЗМЗ-4062.10 сможет удовлетворить европейским экологическим нормам. Применение газового топлива (в данном случае сжатого природного газа) помогает и снизить токсичность выхлопа, и сэкономить.

Моторы Honda обладают высокой удельной мощностью. К тому же ее пик обычно приходится на область высоких оборотов (у данного мотора — между 5000 и 6000 мин-1).

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук

Знакомая картина: запустили двигатель после долгой стоянки и из выхлопной трубы повалил густой дым. Вполне возможно, что после прогрева он уменьшится, а при поездке и вовсе исчезнет. Но чаще бывает иначе. Дымление продолжается и явно показывает, что в моторе имеются какие-то неполадки. Долгое бездействие послужило своего рода толчком к их резкому проявлению.

Дым из выхлопной трубы бывает и белым, и черным, и любых промежуточных оттенков. Цвет служит важным диагностическим признаком. Работа двигателя с повышенным дымлением часто сопровождается и другими отклонениями от нормы, хотя порой малозаметными. Их обязательно надо улавливать и отмечать, чтобы точнее оценить ситуацию.

Обычно появление дыма связано с неисправностями следующих рабочих органов двигателя: системы управления (в основном топливоподачи), системы охлаждения, механической части (поршневая группа, распределительный механизм и т.д.). В соответствии с этим дым возникает либо из-за неполного или «неправильного» сгорания топлива, либо попадания охлаждающей жидкости в цилиндры, либо поступления туда масла. Присутствие масла, охлаждающей жидкости или из- лишнего топлива при сгорании в цилиндрах и придает характерный цвет выхлопным газам.

Если проанализировать возможные неисправности, то окажется, что во многих ситуациях дым одинаков по цвету, хотя и имеет различную природу. Другое обстоятельство: нередко неисправность одной системы, оказывающейся источником дымления, возникает из-за неполадок и дефектов в другой. Вот характерный пример: плохая работа системы охлаждения приводит к перегреву двигателя и, соответственно, пригоранию поршневых колец. Уже вследствие этого в цилиндры попадает масло и вызывает дымление, причина которого по существу вторична.

Начинать поиск причины дыма лучше с сопоставления всех зафиксированных обстоятельств: характера самого дымления, замеченных сопутствующих явлений, возможных внешних влияний. О характерных сочетаниях этих факторов у нас и пойдет речь.

Белый дым

Белый дым из выхлопной трубы - вполне нормальное явление для режимов прогрева холодного двигателя. Только это не дым, а пар. Вода в парообразном состоянии - естественный продукт сгорания топлива. В ненагретой выпускной системе этот пар частично конденсируется и становится видимым, причем на срезе выхлопной трубы обычно появляется вода. По мере прогревания системы конденсация уменьшается. Чем холоднее окружающая среда, тем более плотным и белым получается пар. При температуре ниже -100 С белый пар образуется и на хорошо прогретом двигателе, а при морозе в минус 25 градусов приобретает густой белый цвет с сизым оттенком. На цвет и насыщенность пара влияет также влажность воздуха: чем она больше, тем пар гуще.

Белый дым в теплое время и на хорошо прогретом двигателе чаще всего связан с попаданием охлаждающей жидкости в цилиндры (например, через негерметичную прокладку головки блока). Вода, содержащаяся в охлаждающей жидкости, не успевает полностью испариться при сгорании топлива и образует довольно густой белый дым (на деле опять-таки пар). Его оттенок зависит от состава охлаждающей жидкости, погоды и освещенности на улице. Иной раз он выглядит сизым, напоминая «масляный» дым. Отличить водяной пар легко: он сразу рассеивается, а после «масляного» дыма в воздухе надолго остается синеватый туман.

Чтобы убедиться в виновности именно системы охлаждения, потребуется ряд целевых проверок. Нетрудно уточнить, что из выхлопной трубы действительно выбрасывается вода, а не масло. Для этого на хорошо прогретом двигателе кратковременно закрывают отверстие выхлопной трубы листом бумаги. Капли воды с листа постепенно испарятся и не оставят явных жирных следов, да и на ощупь они не будут жирными.

Далее поиск надо согласовать с конструкцией двигателя. Жидкость может попадать в цилиндр вследствие не только повреждения прокладки, но и трещин в головке или блоке цилиндров. Все эти дефекты при работе двигателя вызывают попадание выхлопных газов в систему охлаждения (порой там даже образуется газовая пробка), что и служит основой для распознавания.

Открыв пробку радиатора или расширительного бачка, легко заметить запах выхлопных газов и пленку масла на поверхности охлаждающей жидкости. Да и уровень жидкости будет пониженным. Характерно, что в таких случаях после запуска холодного двигателя давление в системе охлаждения сразу повышается (нетрудно ощутить рукой, сжав верхний шланг радиатора), быстро увеличивается и уровень жидкости в расширительном бачке. Причем этот уровень нестабилен и в бачке можно заметить выход пузырей газа, иногда с периодическим выбросом охлаждающей жидкости из бачка.

Если двигатель остановить, то картина изменится. Жидкость начинает уходить в цилиндр. Постепенно она проходит через поршневые кольца и попадает в масло, в поддон картера. При последующем запуске масло с жидкостью перемешивается, образует эмульсию и меняет цвет - становится непрозрачным и более светлым. Циркулируя по системе смазки, такая эмульсия оставляет на крышке головки и пробке маслозаливной горловины характерную пену светлого желто-коричневого цвета.

Это проверяют, вынув масляный щуп и открыв пробку горловины, но если дефект (трещина, прогар) невелик, то никаких изменений может и не быть (случается, что масло остается чистым, хотя пена на пробке образуется). Напротив, если негерметичность в цилиндре существенна, то жидкость, накапливаясь над поршнем, даже препятствует провороту коленчатого вала стар- тером в первый момент при запуске. В особо тяжелых случаях возможен гидроудар в цилиндре, деформация и поломка шатуна.

Иногда удается уточнить место дефекта. Попадая в цилиндр, охлаждающая жидкость активно «чистит» все, с чем соприкасается, поэтому и свеча зажигания будет выглядеть совсем свежей. Если через отверстие свечи подать в цилиндр воздух под давлением (например, через переходник со шлангом или специальный тестер утечек), то уровень жидкости в расширительном бачке начнет повышаться (при проверке необходимо повернуть коленчатый вал в положение, при котором оба клапана закрыты, поставить автомобиль на тормоз и включить передачу).

Дальнейшие проверки возможны только со снятой головкой блока. Оценивают состояние прокладки, плоскостей головки и блока. Прогар прокладки часто сопровождается деформацией плоскости головки, особенно если дефекту предшествовал перегрев двигателя (например, из-за неисправности термостата, вентилятора и других причин). Хуже, если явных дефектов не найдено. Тогда необходимо проверить головку на герметичность под давлением; наиболее вероятно, что на стенке камеры сгорания будет обнаружена трещина (чаще вблизи седла выпускного клапана). Следует также внимательно осмотреть цилиндр, опустив поршень в нижнюю мертвую точку. Трещина в цилиндре - редкий дефект, но если она есть, обнаружить ее несложно. Края трещины расходятся (стенки «дышат») и нередко оказываются отполированными поршневыми кольцами.

Бывает также, что охлаждающая жидкость попадает в цилиндр через систему впуска - например, из-за негерметичности прокладки впускного коллектора (если она одновременно уплотняет и каналы подогрева коллектора охлаждающей жидкостью). В подобных случаях давление в системе охлаждения не повышается, запаха выхлопных газов в ней нет, но масло превращается в эмульсию, а уровень охлаждающей жидкости быстро убывает. Этих признаков, как правило, достаточно, чтобы найти дефект и не спутать его с описанным выше, иначе будет напрасно снята головка блока.

Все неполадки, связанные с белым дымом из выхлопной трубы, требуют не только устранения прямых причин. Поскольку дефекты, как правило, вызваны перегревом двигателя, то следует проверить и устранить неисправности в системе охлаждения - возможно, что не работает термостат, датчик включения, муфта или сам вентилятор, негерметичен радиатор, его пробка, шланги или соединения.

Если белый дым и сопутствующие ему дефекты замечены, то эксплуатировать автомобиль нельзя. Во-первых, дефекты быстро прогрессируют. А во-вторых - работа мотора на водомасляной эмульсии резко ускоряет износ деталей и через несколько сотен километров без капитального ремонта, скорее всего, уже не обойтись.

Синий или сизый дым

Основная причина появления синего дыма - попадание масла в цилиндры двигателя. «Масляный» дым может иметь различные оттенки - от прозрачного голубого до густого бело-синего, что зависит от режима работы двигателя, степени его прогрева и количества масла, поступающего в цилиндры, а также освещенности и других факторов. Характерно, что масляный дым, в отличие от пара, не рассеивается в воздухе быстро, а упомянутый выше тест с бумагой дает жирные капли, вылетающие из трубы вместе с выхлопными газами.

Очевидно также, что масляный дым сопровождается повышенным потреблением масла. Так, при расходе около 0,5 л/100 км сизый дым появляется в основном на переходных режимах, а при достижении 1,0 л/100 км - и на режимах равномерного движения. Кстати, в последнем случае на переходных режимах масляный дым становится густым сине-белым. Правда, владельцам самых современных машин надо помнить о возможном наличии нейтрализатора, который способен очистить выхлопные газы от масла даже при достаточно больших расходах.

Масло в цилиндры (точнее, в камеры сгорания) попадает двумя путями - либо снизу, через поршневые кольца, либо сверху, через зазоры между стержнями клапанов и направляющими втулками.

Износ деталей цилиндро-поршневой группы - одна из самых распространенных причин появления масляного дыма. У верхних компрессионных колец наблюдается износ не только по наружной поверхности, контактирующей с цилиндром, но и по торцевым плоскостям, воспринимающим давление газов в цилиндре. Могут быть изношены и канавки этих колец в поршнях. Большие зазоры в канавках создают насосный эффект. Даже если маслосъемные кольца еще в норме, масло все равно поступает в цилиндры, поскольку верхние кольца непрерывно «подкачивают» его снизу вверх.

Цилиндры более всего изнашиваются в зоне остановки верхнего кольца при положении поршня в верхней мертвой точке, а в средней части нередко приобретают овальную форму. Отклонение формы цилиндра от окружности ухудшает уплотнительные свойства колец. В зоне замков обычно образуются просветы, но не исключено их появление и в других местах окружности.

Нередки случаи, когда при сравнительно приличном состоянии колец и поршней повреждается поверхность цилиндра. Это бывает, например, при плохой фильтрации масла, когда между юбкой поршня и цилиндром попадают абразивные частицы. Тогда на цилиндре возникают царапины.

Аналогичная ситуация реальна и после долгой стоянки автомобиля, когда на поверхности цилиндров и колец могут появиться очаги коррозии. Потребуется значительное время на сглаживание этих дефектов и взаимную приработку деталей (если они вообще смогут приработаться).

Тот же эффект часто возникает при нарушении технологии ремонта деталей двигателя, если поверхность отремонтированного цилиндра слишком грубая или цилиндр имеет неправильную форму, либо же использованы некачественные поршни и поршневые кольца. В подобных случаях, как правило, вообще нельзя рассчитывать на нормальную приработку.

Износы деталей цилиндро-поршневой группы нередко сопровождаются потерей компрессии и повышением давления картерных газов, что определяют соответствующими приборами (компрессометр, тестер утечек и др.). Однако следует помнить, что большое количество масла, поступающего в цилиндры, хорошо уплотняет зазоры в сопряженных деталях. Если они не слишком велики, то результат оценки компрессии может быть вполне нормальным, иногда даже ближе к верхнему пределу. Именно это обстоятельство запутывает поиск конкретной причины синего масляного дыма.

Еще одно замечание о характерных обстоятельствах. Когда больших износов деталей нет, то синий или сине-белый дым явно наблюдается только при прогреве двигателя, постепенно уменьшаясь и даже исчезая. Причина проста: нагреваясь, детали приобретают форму и занимают место, при которых они лучше прилегают друг к другу. При чрезмерно больших износах картина обратная: дым на прогретом двигателе усилится, так как горячему маслу, имеющему малую вязкость, легче попасть в цилиндр через изношенные детали.

Всегда легче определить неисправность, связанную с более серьезными дефектами или даже поломками деталей. Так, детонация обычно приводит к поломке перемычек между кольцами на поршнях, реже - к поломке самих колец. Сильный перегрев двигателя вызывает деформацию юбок поршней, образуется большой зазор между поршнем и цилиндром. Деформированный поршень перекашивается, нарушая работу колец. Тот же результат возможен при деформации шатуна, например, из-за гидроудара при попадании воды в цилиндр или после обрыва ремня и удара поршня по незакрывшемуся клапану.

Применение низкокачественного масла может вызвать пригорание и залегание колец в канавках поршня. А вследствие длительного калильного зажигания кольца могут быть просто завальцованы в канавках с полной потерей подвижности.

Рассмотренные выше дефекты обычно возникают не во всех цилиндрах сразу. Найти неисправный цилиндр нетрудно, сравнив состояние свечей зажигания и значение компрессии в разных цилиндрах. Более того, подобным дефектам часто сопутствуют разного рода посторонние шумы и стуки, изменяющиеся с оборотами, нагрузкой и степенью прогрева двигателя, а также неустойчивая работа двигателя из-за отключения цилиндров (особенно при холодном пуске).

Распространенная группа неисправностей, вызывающих масляный дым и расход масла, связана с износом стержней клапанов и направляющих втулок, а также износом, механическими дефектами и старением (потерей эластичности) маслосъемных колпачков. Эти дефекты, как правило, дают заметное увеличение дымления двигателя по мере прогрева, поскольку разжиженное горячее масло гораздо легче проходит через зазоры между изношенными деталями. Кроме того, попадание масла в цилиндры усиливается на холостом ходу и при торможении двигателем. На этих режимах во впускном коллекторе возникает большое разрежение, и масло течет по стержням клапанов под действием перепада давления, накапливаясь на стенках деталей и в выхлопной системе. Последующее открытие дроссельной заслонки в первый момент резко усиливает густоту синего масляного дыма.

У двигателей с турбонаддувом расход масла, сопровождаемый синим дымом, возможен из-за неисправности турбокомпрессора, в частности, износа подшипников и уплотнений ротора. Износ уплотнения переднего подшипника компрессора дает картину, похожую на выход из строя маслосъемных колпачков (включая масляный нагар на свечах), но при этом во входном патрубке компрессора собирается лужица масла. Неисправность уплотнения турбины определить сложно, поскольку масло поступает непосредственно в выхлопную систему и там догорает.

В эксплуатации синий дым и расход масла нередко появляются при отключении одного из цилиндров из-за неисправности зажигания или при негерметичности клапанов. В последнем случае дым становится бело-голубым, особенно, если клапан имеет явный прогар. Такой дефект определяется без труда - компрессия в этом цилиндре незначительна или вообще отсутствует, а на свече появляется обильный черный нагар, часто в виде наростов.

Встречаются и довольно экзотические дефекты, вызывающие синий масляный дым. Так, у автоматических коробок передач с вакуумным датчиком нагрузки возможен разрыв мембраны регулятора. Поскольку ее полость соединена шлангом со впускным коллектором, то двигатель начинает попросту высасывать масло из коробки передач. Как правило, масло поступает только в те цилиндры, около которых в коллекторе сделан отбор вакуума. При этом возможен заброс свечей и разбрызгивание масла из свечных отверстий (напомним, что масла ATF обычно имеют красный цвет).

Черный дым

Черный дым из выхлопной трубы свидетельствует о переобогащении топливо-воздушной смеси, и, следовательно, о неисправностях системы топливоподачи. Такой дым обычно хорошо просматривается на светлом фоне за автомобилем и представляет собой частички сажи - продукты неполного сгорания топлива.

Черный дым часто сопровождается большим расходом топлива, плохим запуском, неустойчивой работой двигателя, высокой токсичностью выхлопных газов, а нередко и потерей мощности из-за неоптимального состава топливовоздушной смеси.

У карбюраторных двигателей черный дым обычно возникает из-за перелива в поплавковой камере вследствие дефекта игольчатого клапана или из-за закоксовывания воздушных жиклеров.

У бензиновых двигателей с электронным впрыском топлива переобогащение смеси появляется, как правило, при неисправности и отказах различных датчиков (кислорода, расхода воздуха и др.), а также при негерметичности форсунок. Последний случай опасен гидроударом в цилиндре при запуске со всеми упоминавшимися выше последствиями. Суть в том, что через неисправную форсунку на неработающем двигателе в цилиндр может вытечь много топлива, а оно не позволит поршню подойти к верхней мертвой точке. У дизелей черный дым иногда появляется не только при нарушениях в работе насоса высокого давления, но и при большом угле опережения впрыска.

Общим для режимов работы бензиновых двигателей на переобогащенной смеси является повышенный износ и даже задиры деталей цилиндро-поршневой группы, поскольку избыточное топливо смывает масло со стенок цилиндров и ухудшает смазку. Кроме того, топливо попадает в масло и разжижает его, ухудшая условия смазки и в других сопряженных деталях двигателя. В некоторых случаях это разжижение настолько велико, что уровень масла в картере (точнее, смеси масла с топливом) значительно повышается. Разбавленное масло приобретает отчетливый запах бензина.

Очевидно, что эксплуатация двигателя с такими неисправностями не только затруднительна, но и крайне нежелательна, поскольку быстро ведет к новым, куда более серьезным неприятностям.

В изношенном цилиндре кольцо потеряло контакт и пригорело (черный участок поверхности), из-за чего резко упала компрессия и возрос расход масла

Задиры на поршне и повреждения цилиндра после перегрева двигателя вызвали увеличение расхода масла и синий дым выхлопа

Прогар поршня после длительной работы изношенного двигателя на максимальных режимах: бензиновый двигатель (слева) и дизель